EAGER: SaTC: Quantifying the Fair Value of Data and Privacy in Distributed Learning

EAGER:SaTC:量化分布式学习中数据和隐私的公允价值

基本信息

  • 批准号:
    2232146
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Data-driven decision-making drives the engine of our modern economy. As data becomes an increasingly important resource, understanding its value becomes critical. This project marries the economic study of data with the growing field of data privacy to present a framework for quantifying the value of data and privacy. The relationship between users who generate data and platforms that collect and benefit from this data will be explored, progressing our understanding of what constitutes a fair and open data market. Emphasis is placed on the concept of fair payment for data by considering well-known concepts from economics and extending them to include the critical component of user privacy. A better understanding of the value of data and privacy can empower individuals and regulators, leading to a stronger and more productive economy. In addition, the project addresses the important topic of fairness. This research has the potential to transform the way data is viewed, treated, and monetized by studying a fundamental framework where platforms and individuals can both fairly benefit from the value of data.This project systematically approaches the fundamental question of how to quantify the value of data in a privacy-centric game-theoretic framework in order to explore the relationship between platforms and users with data, leading to the concept of a fair and open data market. The concept of fair payment for data is considered using the foundational game-theoretic concept of the Shapley value, and extending this concept to include the critical component of heterogeneous user privacy. Specifically, the proposed project investigates the technical questions of how to quantify the cost of providing privacy, how to monetize the value of data at various heterogeneous levels of privacy, and how to enable platforms to design fair incentive structures. The proposed investigation is highly interdisciplinary, including elements of optimization, machine learning, probability theory, and statistics, as well as critically, from relevant aspects of economics and game theory such as Nash equilibria and Shapley value to treat concepts like fairness and value. The project aims to bridge the recent advancements in rigorous privacy guarantees for statistical inference and machine learning settings with the economics of quantifying the value of data under heterogeneous privacy requirements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据驱动的决策推动了我们现代经济的引擎。 随着数据成为越来越重要的资源,理解其价值变得至关重要。 该项目将数据的经济研究与越来越多的数据隐私领域结合在一起,以提出一个量化数据和隐私价值的框架。将探讨生成数据和受益的数据的用户之间的关系,从而探索我们对公平和开放数据市场的理解。通过考虑经济学的知名概念并将其扩展到包括用户隐私的关键组成部分,重点放在数据公平支付的概念上。 更好地了解数据和隐私的价值可以增强个人和监管机构的能力,从而导致更强大,更有生产力的经济。此外,该项目还解决了公平的重要主题。这项研究具有通过研究一个基本框架来查看,处理和获利数据的潜力,在该框架中,平台和个人都可以从数据的价值中相当受益。本项目系统地探讨了如何量化数据在隐私中心的游戏框架中的基本问题,以探索平台与数据之间的关系,并探索数据和数据之间的概念,该概念是一个公平的概念,该概念是一个公平的概念。使用Shapley值的基础游戏理论概念考虑了数据的公平支付概念,并将此概念扩展到包括异质用户隐私的关键组成部分。具体而言,拟议的项目研究了如何量化提供隐私成本的技术问题,如何在各种异质级别的隐私层面上获利数据价值,以及如何使平台设计公平的激励结构。拟议的调查是高度跨学科的,包括优化,机器学习,概率理论和统计学的要素,以及从经济学和游戏理论的相关方面(例如纳什均衡和莎普利价值)来处理诸如公平和价值之类的概念。该项目旨在弥合严格隐私的最新进展,以保证统计推断和机器学习环境,具有量化在异质隐私要求下数据价值的经济学。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力和更广泛影响的评估来进行评估的支持,这是值得的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kannan Ramchandran其他文献

Kannan Ramchandran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kannan Ramchandran', 18)}}的其他基金

Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
  • 批准号:
    2002821
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CIF: Small: Foundations of Serverless Computing: Optimizing Latency and Utility
CIF:小型:无服务器计算的基础:优化延迟和实用性
  • 批准号:
    2007669
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SaTC: CORE: Small: Blockchain Architectures for Resource-Constrained Devices
EAGER:SaTC:核心:小型:资源受限设备的区块链架构
  • 批准号:
    1937357
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CIF:Medium:Collaborative Research: Foundations of Coding for Modern Distributed Computing
CIF:中:协作研究:现代分布式计算编码基础
  • 批准号:
    1703678
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CIF:Small:Next-Generation Compressive Phase-Retrieval Using Sparse-Graph Codes: Theory, Design and Applications
CIF:Small:使用稀疏图代码的下一代压缩相位检索:理论、设计和应用
  • 批准号:
    1527767
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Ultra-FFAST Alias Codes for Sparse Spectrum Estimation: Next Generation Compressed Sensing
EAGER:用于稀疏频谱估计的 Ultra-FFAST 别名代码:下一代压缩感知
  • 批准号:
    1439725
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Content Delivery over Heterogeneous Networks: Fundamental Limits and Distributed Algorithms
CIF:媒介:协作研究:异构网络上的内容交付:基本限制和分布式算法
  • 批准号:
    1409135
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Workshop Proposal: Communication Theory and Signal Processing in the Cloud Era
研讨会提案:云时代的通信理论和信号处理
  • 批准号:
    1228976
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Small: CIF: Foundations of Next-Generation Reliable, Energy-Efficient and Secure Distributed Storage Systems
小:CIF:下一代可靠、节能和安全的分布式存储系统的基础
  • 批准号:
    1116404
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Interactive Security
CIF:媒介:协作研究:交互式安全
  • 批准号:
    0964018
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

CRII: SaTC: Automated Knowledge Representation for IoT Cybersecurity Regulations
CRII:SaTC:物联网网络安全法规的自动化知识表示
  • 批准号:
    2348147
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CRII: SaTC: Privacy vs. Accountability--Usable Deniability and Non-Repudiation for Encrypted Messaging Systems
CRII:SaTC:隐私与责任——加密消息系统的可用否认性和不可否认性
  • 批准号:
    2348181
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Evolving I/O Protocols for Confidential Computing
CRII:SaTC:用于机密计算的不断发展的 I/O 协议
  • 批准号:
    2348130
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了