Irrationality of Periods and Arithmetic of Abelian Varieties
周期的无理性与阿贝尔簇的算术
基本信息
- 批准号:2231958
- 负责人:
- 金额:$ 20.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research project concerns work in Diophantine geometry and arithmetic geometry, which are essentially ways to understand solutions of families of polynomial equations. The first part of the project studies irrationality in Diophantine geometry. A classical way to prove a number is irrational is by showing that there exists a sequence of rational numbers that approximate this number very well. There are many interesting (conjecturally) irrational numbers in the literature with approximations by rational numbers that are not good enough to apply the classical methods. The principal investigator and collaborators will develop a new framework to explore the properties of certain power series constructed from these approximations in order to prove the conjectured irrationality in some important cases. The second part of the project studies the arithmetic of abelian varieties, which are higher dimensional analogues of elliptic curves. These geometric objects can be defined by polynomial equations over the integers. The principal investigator and collaborators will study the behavior of certain abelian varieties modulo different prime numbers. The proposed work includes the training of undergraduate and graduate students. For the first part, the classical way of proving irrationality can be formulated as studying the convergence radii of the power series associated to the rational approximations and comparing them to the denominator type of the power series. In earlier studies of rationality and algebraicity criterion of power series, the convergence radii have been replaced by many variants, which are numerically larger; therefore, there are rational approximations whose convergence radii are too small compared to the denominator type while these variants are large enough. The PI and collaborators expect to explore these larger radii variants to solve some irrationality questions. For the second part, the PI and collaborators expect to generalize Elkies’s theorem on infinitude of supersingular reductions of elliptic curves to certain abelian varieties parametrized by genus 0 Shimura curves.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目涉及丢番图几何和算术几何,它们本质上是理解多项式方程族解的方法。该项目的第一部分研究丢番图几何中的无理数。证明数字无理数的经典方法是证明:存在一个可以很好地逼近这个数的有理数序列。文献中存在许多有趣的(推测性的)无理数,它们的有理数逼近还不足以应用该数。项目的第二部分研究了阿贝尔簇的算术,主要研究者和合作者将开发一个新的框架,从这些近似中探索某些幂级数的性质,以证明猜想的非理性。是椭圆曲线的高维类似物。这些几何对象可以通过整数上的多项式方程来定义。主要研究者和合作者将研究某些阿贝尔簇模的行为。拟议的工作包括对本科生和研究生的培训,证明无理数的经典方法可以表述为研究与有理近似相关的幂级数的收敛无线电并将它们与分母进行比较。在早期对幂级数的有理性和代数性准则的研究中,收敛射数已被许多数值上较大的变体所取代,因此存在有理近似。与分母类型相比,其收敛半径太小,而这些变体足够大。 PI 和合作者希望探索这些较大的半径变体来解决一些非理性问题。对于第二部分,PI 和合作者希望推广 Elkies 定理。椭圆曲线到某些阿贝尔簇的无限超奇异约简,由属 0 Shimura 曲线参数化。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yunqing Tang其他文献
Experimental investigation on the growth rate of Cubr /nano-thin films by DC and RF magnetron sputteringbr /methods
直流和射频磁控溅射法制备Cunano薄膜生长速率的实验研究
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Liqiang Zhang;Chaoyan Xu;Yunqing Tang - 通讯作者:
Yunqing Tang
Impact and Prediction of AI Diagnostic Report Interpretation Type on Patient Trust
AI诊断报告解读类型对患者信任度的影响及预测
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yunqing Tang;Jinliang Cai - 通讯作者:
Jinliang Cai
Cycles in the de Rham cohomology of abelian varieties over number fields
数域上阿贝尔簇的 de Rham 上同调中的循环
- DOI:
10.1112/s0010437x17007679 - 发表时间:
2015 - 期刊:
- 影响因子:1.8
- 作者:
Yunqing Tang - 通讯作者:
Yunqing Tang
Thermal Effects on LED Lamp With Different Thermal Interface Materials
不同热界面材料对 LED 灯的热影响
- DOI:
10.1109/ted.2016.2615882 - 发表时间:
2016-11 - 期刊:
- 影响因子:3.1
- 作者:
Yunqing Tang;Dongjing Liu;Haiying Yang;Ping Yang - 通讯作者:
Ping Yang
Pushing the Study of Point Defects in Thin Film Ferrites to Low Temperatures Using In Situ Ellipsometry
利用原位椭圆光度法将薄膜铁氧体中点缺陷的研究推向低温
- DOI:
10.1002/admi.202001881 - 发表时间:
2021 - 期刊:
- 影响因子:5.4
- 作者:
Yunqing Tang;F. Chiabrera;Á. Morata;I. Garbayo;N. Alayo;A. Tarancón - 通讯作者:
A. Tarancón
Yunqing Tang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yunqing Tang', 18)}}的其他基金
Irrationality of Periods and Arithmetic of Abelian Varieties
周期的无理性与阿贝尔簇的算术
- 批准号:
2201124 - 财政年份:2022
- 资助金额:
$ 20.1万 - 项目类别:
Standard Grant
Arithmetic Intersection on Shimura Varieties and Properties of Abelian Varieties
志村品种的算术交集及阿贝尔品种的性质
- 批准号:
1801237 - 财政年份:2018
- 资助金额:
$ 20.1万 - 项目类别:
Standard Grant
相似国自然基金
基于成像转录组学的针刺调节“下丘脑精细连接梯度-5-HT系统”改善围绝经期失眠的跨尺度中枢机制研究
- 批准号:82374590
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于外泌体miR-122探究围绝经期肥胖肝郁脾虚证模型的生物学基础
- 批准号:82305068
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
槲皮素通过促进组蛋白乙酰化调控GPX4介导的铁死亡在围绝经期抑郁症中的作用及机制研究
- 批准号:82373560
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
星形胶质细胞源外泌体经由MCT2阻断神经元-胶质细胞代谢偶联在围绝经期抑郁症中的作用机制研究
- 批准号:82373585
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于腺垂体miRNAs参与FSHβ表观遗传调控研究电针治疗围绝经期肥胖脂代谢紊乱的作用机制
- 批准号:82305366
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Irrationality of Periods and Arithmetic of Abelian Varieties
周期的无理性与阿贝尔簇的算术
- 批准号:
2201124 - 财政年份:2022
- 资助金额:
$ 20.1万 - 项目类别:
Standard Grant
Trace Formulas, L-Functions, and Automorphic and Arithmetic Periods
迹公式、L 函数以及自守和算术周期
- 批准号:
2000533 - 财政年份:2020
- 资助金额:
$ 20.1万 - 项目类别:
Continuing Grant
Arithmetic study of motivic cohomology, periods and regulators
动机上同调、周期和调节子的算术研究
- 批准号:
15K04769 - 财政年份:2015
- 资助金额:
$ 20.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic of differential operators, K-theory and periods of motives
微分算子算法、K 理论和动机周期
- 批准号:
1502296 - 财政年份:2015
- 资助金额:
$ 20.1万 - 项目类别:
Standard Grant
Arithmetic of automorphic forms: cycles, periods and p-adic L-functions
自守形式的算术:循环、周期和 p 进 L 函数
- 批准号:
1160720 - 财政年份:2012
- 资助金额:
$ 20.1万 - 项目类别:
Continuing Grant