Arithmetic Intersection on Shimura Varieties and Properties of Abelian Varieties

志村品种的算术交集及阿贝尔品种的性质

基本信息

  • 批准号:
    1801237
  • 负责人:
  • 金额:
    $ 16.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

This research project concerns work in arithmetic geometry, a branch of mathematics that studies polynomial equations over the integers. Such equations define geometric objects; among them the most accessible and fundamental ones are elliptic curves (one-dimensional case) and abelian varieties (higher-dimensional analogue). A modern way to approach these objects is to study them in families, and certain geometric objects, so-called Shimura varieties, have been used to parametrize these families. Arithmetic properties of abelian varieties can be translated into arithmetic-geometric properties of the corresponding Shimura variety. In this way, the principal investigator and her collaborators will be able to use methods from different areas of mathematics such as algebraic geometry, number theory, and representation theory to study the arithmetic of abelian varieties.The main theme of this project is the infinitude of certain thin sets of primes arising from reduction types of abelian varieties. When the abelian varieties are over number fields, the principal investigator and her collaborators are aiming for results along the line of Elkies' theorem on supersingular reductions of elliptic curves. The research will focus on nonsimple reductions or reductions with higher Picard rank and establish a general framework to treat certain abelian varieties of arbitrarily high dimension. In the function field case, certain new phenomena appear and are related to the geometry of the Newton strata of the corresponding Shimura variety. The philosophy of this project is related to the Kudla program on arithmetic intersection of special cycles on Shimura varieties. In addition to the usual setting of the Kudla program, certain non-special cycles are studied in the framework of this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目涉及算术几何的工作,算术几何是研究整数多项式方程的数学分支。这些方程定义了几何对象;其中最容易理解和最基础的是椭圆曲线(一维情况)和阿贝尔簇(高维模​​拟)。处理这些对象的一种现代方法是在族中研究它们,并且某些几何对象,即所谓的 Shimura 品种,已被用来参数化这些族。阿贝尔簇的算术性质可以转化为相应志村簇的算术几何性质。这样,首席研究员和她的合作者将能够使用代数几何、数论和表示论等不同数学领域的方法来研究阿贝尔簇的算术。这个项目的主题是无穷大由阿贝尔簇的约简类型产生的某些薄素数集。当阿贝尔簇超过数域时,首席研究员和她的合作者的目标是沿着椭圆曲线超奇异约简的 Elkies 定理得到结果。该研究将集中于非简单约简或具有更高皮卡德等级的约简,并建立一个通用框架来处理某些任意高维的阿贝尔簇。在函数场的情况下,出现了某些新现象,并且与相应的Shimura簇的牛顿层的几何形状有关。该项目的理念与 Shimura 品种上特殊循环算术交集的 Kudla 程序相关。除了 Kudla 计划的通常设置之外,该项目的框架中还对某些非特殊周期进行了研究。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reductions of abelian surfaces over global function fields
全局函数域上阿贝尔曲面的约简
  • DOI:
    10.1112/s0010437x22007473
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Maulik, Davesh;Shankar, Ananth N.;Tang, Yunqing
  • 通讯作者:
    Tang, Yunqing
Picard ranks of K3 surfaces over function fields and the Hecke orbit conjecture.
K3 曲面在函数场和 Hecke 轨道猜想上的皮卡德排序。
  • DOI:
    10.1007/s00222-022-01097-x
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Maulik, David;Shankar, Ananth N.;Tang, Yunqing
  • 通讯作者:
    Tang, Yunqing
Exceptional jumps of Picard ranks of reductions of K3 surfaces over number fields
K3 曲面在数域上的约简皮卡德等级的异常跳跃
  • DOI:
    10.1017/fmp.2022.14
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shankar, Ananth N.;Shankar, Arul;Tang, Yunqing;Tayou, Salim
  • 通讯作者:
    Tayou, Salim
Newton Polygon Stratification of the Torelli Locus in Unitary Shimura Varieties
酉志村品种 Torelli 轨迹的牛顿多边形分层
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yunqing Tang其他文献

Experimental investigation on the growth rate of Cubr /nano-thin films by DC and RF magnetron sputteringbr /methods
直流和射频磁控溅射法制备Cunano薄膜生长速率的实验研究
Impact and Prediction of AI Diagnostic Report Interpretation Type on Patient Trust
AI诊断报告解读类型对患者信任度的影响及预测
Cycles in the de Rham cohomology of abelian varieties over number fields
数域上阿贝尔簇的 de Rham 上同调中的循环
  • DOI:
    10.1112/s0010437x17007679
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Yunqing Tang
  • 通讯作者:
    Yunqing Tang
Thermal Effects on LED Lamp With Different Thermal Interface Materials
不同热界面材料对 LED 灯的热影响
  • DOI:
    10.1109/ted.2016.2615882
  • 发表时间:
    2016-11
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Yunqing Tang;Dongjing Liu;Haiying Yang;Ping Yang
  • 通讯作者:
    Ping Yang
Pushing the Study of Point Defects in Thin Film Ferrites to Low Temperatures Using In Situ Ellipsometry
利用原位椭圆光度法将薄膜铁氧体中点缺陷的研究推向低温
  • DOI:
    10.1002/admi.202001881
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Yunqing Tang;F. Chiabrera;Á. Morata;I. Garbayo;N. Alayo;A. Tarancón
  • 通讯作者:
    A. Tarancón

Yunqing Tang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yunqing Tang', 18)}}的其他基金

Irrationality of Periods and Arithmetic of Abelian Varieties
周期的无理性与阿贝尔簇的算术
  • 批准号:
    2201124
  • 财政年份:
    2022
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Standard Grant
Irrationality of Periods and Arithmetic of Abelian Varieties
周期的无理性与阿贝尔簇的算术
  • 批准号:
    2231958
  • 财政年份:
    2022
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Standard Grant

相似国自然基金

混合交通环境下交叉路口分布式多车协同决策方法
  • 批准号:
    52302410
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
混合交通流下网联交叉路口的高通行率协同决策机理与方法研究
  • 批准号:
    52272420
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
无信号交叉路口混合多车协同通行的强化学习方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于车载GNSS航迹数据的精细车道电子导航地图构建技术
  • 批准号:
    41601486
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
有轨电车优先通行管理控制策略对交叉路口车流运行影响的机理研究
  • 批准号:
    71571107
  • 批准年份:
    2015
  • 资助金额:
    48.7 万元
  • 项目类别:
    面上项目

相似海外基金

Intersection numbers of geodesics on Shimura curves and modular curves.
Shimura 曲线和模曲线上测地线的交点数。
  • 批准号:
    533676-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Intersection numbers of geodesics on Shimura curves and modular curves.
Shimura 曲线和模曲线上测地线的交点数。
  • 批准号:
    533676-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
  • 批准号:
    RGPIN-2014-05614
  • 财政年份:
    2018
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Discovery Grants Program - Individual
Intersection numbers of geodesics on Shimura curves and modular curves.
Shimura 曲线和模曲线上测地线的交点数。
  • 批准号:
    533676-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Relationship between History and Literature in the Mid-Meiji Period
明治中期历史与文学的关系
  • 批准号:
    17K13390
  • 财政年份:
    2017
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了