Collaborative Research: SWIFT: LARGE: AI-Enabled Spectrum Coexistence between Active Communications and Passive Radio Services: Fundamentals, Testbed and Data
合作研究:SWIFT:大型:主动通信和无源无线电服务之间人工智能支持的频谱共存:基础知识、测试平台和数据
基本信息
- 批准号:2202972
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Passive remote sensing services are indispensable in modern society. One important remote sensing application for Earth science and climate studies is soil moisture monitoring, which provides crucial information for agricultural management; forecasting severe weather, floods and droughts; and climate modeling and prediction. In parallel, modern society also depends heavily on active wireless communications technologies for commerce, transportation, health, science, and defense. Unfortunately, the growth of active wireless systems often increases radio frequency (RF) interference (RFI) experienced by passive systems. At best, RFI may reduce the accuracy of the passive system's measurements; at worst, it may render them useless. The goal of this project is to develop advanced signal processing, resource management and artificial intelligence (AI) techniques at the active and passive users to enable them to coexist in the same RF bands, thereby making more spectrum available to active systems while protecting the passive systems from RFI. The results will be presented to scientists, regulators, industry and standardization bodies that shape future wireless systems and spectrum access rules. The project will support the PIs’ efforts to broaden the participation of students from underrepresented minority groups in engineering in collaboration with well-established programs at their institutions. Students trained through this project will be positioned to pioneer advanced wireless systems that are adaptable and can operate outside of dedicated RF spectrum. The testbed technology, methodology, and collected datasets will be shared with the scientific community and public through repositories and community research testbeds. This project combines emerging technologies to address research challenges across multiple layers of the network protocol stack and across active and passive RF systems to tackle the critical problem of active-passive RF spectrum coexistence. It develops novel sparsity and AI-based RFI detection and mitigation techniques at the physical and application layers of passive sensing systems. It introduces a wireless channel virtualization and waveform optimization framework at the physical layer of active transceivers—applicable to current and next generation wireless systems—to enable AI-based sparse time-frequency scheduling at the active transmitter's physical and medium access control layers. The proposed algorithms and waveforms will be co-optimized with the passive sensing system's RFI detection and mitigation strategy using offline training to further improve spectrum coexistence. To this end, the project is designing and developing a one-of-a-kind testbed in collaboration with NASA for collecting, processing and sharing remote sensing datasets in conjunction with ground and drone-based active communication systems with ground truth data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
被动遥感服务在地球科学和气候研究中不可或缺的一项重要应用是土壤湿度监测,它为农业管理、预测灾害性天气、洪水和干旱以及气候建模和预测提供了重要信息。现代社会在商业、交通、健康、科学和国防方面也严重依赖有源无线通信技术,不幸的是,有源无线系统的发展往往会增加无源系统所经历的射频 (RF) 干扰 (RFI)。 RFI 可能会降低准确度无源系统的测量;在最坏的情况下,可能会使它们毫无用处。该项目的目标是为有源和无源用户开发先进的信号处理、资源管理和人工智能(AI)技术,使它们能够在同一射频中共存。频段,从而为有源系统提供更多频谱,同时保护无源系统免受 RFI 影响。研究结果将提交给制定未来无线系统和频谱访问规则的科学家、监管机构、行业和标准化机构。该项目将支持 PI 的工作。扩大学生的参与范围通过该项目接受培训的学生将能够在工程领域与所在机构的成熟项目合作,开发具有适应性且可以在专用射频频谱之外运行的先进无线系统。该项目将通过存储库和社区研究测试平台与科学界和公众共享,以解决跨网络协议栈多层以及有源和无源射频系统的研究挑战,从而解决有源-无源射频的关键问题。光谱它在无源传感系统的物理层和应用层开发了新颖的稀疏性和基于人工智能的 RFI 检测和缓解技术,在有源收发器的物理层引入了无线通道虚拟化和波形优化框架,适用于当前和下一代。无线系统——在有源发射机的物理和介质访问控制层实现基于人工智能的稀疏时频调度。所提出的算法和波形将与无源传感系统的 RFI 检测和传输共同优化。为此,该项目正在与 NASA 合作设计和开发一种独一无二的测试平台,用于结合地面和无人机收集、处理和共享遥感数据集。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Meta-Learning for Wireless Interference Identification
无线干扰识别的元学习
- DOI:10.1109/wcnc55385.2023.10119039
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Owfi, Ali;Afghah, Fatemeh;Ashdown, Jonathan
- 通讯作者:Ashdown, Jonathan
An Exhaustive Study of Using Commercial LTE Network for UAV Communication in Rural Areas
农村地区使用商用 LTE 网络进行无人机通信的详尽研究
- DOI:10.1109/iccworkshops50388.2021.9473547
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Gharib, Mohammed;Nandadapu, Shashidhar;Afghah, Fatemeh
- 通讯作者:Afghah, Fatemeh
A Meta-learning based Generalizable Indoor Localization Model using Channel State Information
使用信道状态信息的基于元学习的可推广室内定位模型
- DOI:10.1109/globecom54140.2023.10436827
- 发表时间:2023-05-22
- 期刊:
- 影响因子:0
- 作者:Ali Owfi;ChunChih Lin;Linke Guo;F. Afghah;J. Ashdown;K. Turck
- 通讯作者:K. Turck
Joint 3D Placement and Interference Management for Drone Small Cells
无人机小型基站的联合 3D 放置和干扰管理
- DOI:10.1109/ieeeconf53345.2021.9723350
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Namvar, Nima;Afghah, Fatemeh
- 通讯作者:Afghah, Fatemeh
UAV-Assisted Communication in Remote Disaster Areas Using Imitation Learning
利用模仿学习在偏远灾区进行无人机辅助通信
- DOI:10.1109/ojcoms.2021.3067001
- 发表时间:2021-01
- 期刊:
- 影响因子:7.9
- 作者:Shamsoshoara, Alireza;Afghah, Fatemeh;Blasch, Erik;Ashdown, Jonathan;Bennis, Mehdi
- 通讯作者:Bennis, Mehdi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fatemeh Afghah其他文献
PyroTrack: Belief-Based Deep Reinforcement Learning Path Planning for Aerial Wildfire Monitoring in Partially Observable Environments
PyroTrack:基于信念的深度强化学习路径规划,用于部分可观测环境中的空中野火监测
- DOI:
10.48550/arxiv.2403.11095 - 发表时间:
2024-03-17 - 期刊:
- 影响因子:0
- 作者:
Sahand Khoshdel;Qi Luo;Fatemeh Afghah - 通讯作者:
Fatemeh Afghah
Efficient Fuzzy-Based 3-D Flying Base Station Positioning and Trajectory for Emergency Management in 5G and Beyond Cellular Networks
用于 5G 及其他蜂窝网络应急管理的高效模糊 3D 飞行基站定位和轨迹
- DOI:
10.1109/jsyst.2024.3359776 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:4.4
- 作者:
M. J. Sobouti;H. Adarbah;Afshin Alaghehb;Hamid Chitsaz;A. Mohajerzadeh;Mehdi Sookhak;Seyed Amin Hosseeini Seno;Abedin Vahedian;Fatemeh Afghah - 通讯作者:
Fatemeh Afghah
FlameFinder: Illuminating Obscured Fire through Smoke with Attentive Deep Metric Learning
FlameFinder:通过专注的深度度量学习通过烟雾照亮模糊的火焰
- DOI:
10.48550/arxiv.2404.06653 - 发表时间:
2024-04-09 - 期刊:
- 影响因子:0
- 作者:
Hossein Rajoli;Sah;Khoshdel;Fatemeh Afghah;Xiaolong Ma - 通讯作者:
Xiaolong Ma
Artificial Intelligence for Climate Smart Forestry: A Forward Looking Vision
气候智能型林业的人工智能:前瞻性愿景
- DOI:
10.1109/cogmi58952.2023.00011 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:0
- 作者:
Feng Luo;Ling Liu;G. G. Wang;Vijay Kumar;Mark S. Ashton;Jacob Abernethy;Fatemeh Afghah;Matthew H. E. M. Browning;David Coyle;Philip Dames;Tom O'Halloran;James Hays;Patrick Heisl;Chenfanfu Jiang;Puskar Khanal;V. Krovi;Sara Kuebbing;Nianyi Li;Jingjing Liang;Ninghao Liu;Steve McNulty;C. Oswalt;Neil Pederson;D. Terzopoulos;Christopher W. Woodall;Yongkai Wu;Jian Yang;Yin Yang;Liang Zhao - 通讯作者:
Liang Zhao
Wildland Fire Detection and Monitoring Using a Drone-Collected RGB/IR Image Dataset
使用无人机收集的 RGB/IR 图像数据集进行荒地火灾探测和监控
- DOI:
10.1109/access.2022.3222805 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:3.9
- 作者:
Xiwen Chen;Bryce Hopkins;Hao Wang;Leo O’Neill;Fatemeh Afghah;A. Razi;Peter Fulé;Janice Coen;Eric Rowell;Adam Watts - 通讯作者:
Adam Watts
Fatemeh Afghah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fatemeh Afghah', 18)}}的其他基金
Collaborative Research:CISE-MSI:DP:CNS:Adaptive Multi-Tiered, Multi-Task Base Station Infrastructure For Communication-Denied Environments
合作研究:CISE-MSI:DP:CNS:用于通信被拒绝环境的自适应多层、多任务基站基础设施
- 批准号:
2318726 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Toward Autonomous Decision Making and Coordination in Intelligent Unmanned Aerial Vehicles' Operation in Dynamic Uncertain Remote Areas
职业:在动态不确定的偏远地区实现智能无人机操作的自主决策和协调
- 批准号:
2232048 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: CPS: Medium: Wildland Fire Observation, Management, and Evacuation using Intelligent Collaborative Flying and Ground Systems
协作研究:CPS:中:使用智能协作飞行和地面系统进行荒地火灾观测、管理和疏散
- 批准号:
2204445 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Wildland Fire Observation, Management, and Evacuation using Intelligent Collaborative Flying and Ground Systems
协作研究:CPS:中:使用智能协作飞行和地面系统进行荒地火灾观测、管理和疏散
- 批准号:
2039026 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Wildland Fire Observation, Management, and Evacuation using Intelligent Collaborative Flying and Ground Systems
协作研究:CPS:中:使用智能协作飞行和地面系统进行荒地火灾观测、管理和疏散
- 批准号:
2204445 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative: Smart Health in the AI and COVID Era
协作:人工智能和新冠时代的智能健康
- 批准号:
2120217 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
PFI-RP: Design and Fabrication of Hardware-based Security Platform using Fabrication Variability of Ultra low Power Memories
PFI-RP:利用超低功耗存储器的制造可变性设计和制造基于硬件的安全平台
- 批准号:
2204502 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
PFI-RP: Design and Fabrication of Hardware-based Security Platform using Fabrication Variability of Ultra low Power Memories
PFI-RP:利用超低功耗存储器的制造可变性设计和制造基于硬件的安全平台
- 批准号:
2204502 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SCC-PG: Just in Time Intervention for Patients with Chronic Heart Diseases in Arizona tribes
SCC-PG:对亚利桑那州部落慢性心脏病患者进行及时干预
- 批准号:
2125643 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SCC-PG: Just in Time Intervention for Patients with Chronic Heart Diseases in Arizona tribes
SCC-PG:对亚利桑那州部落慢性心脏病患者进行及时干预
- 批准号:
2213915 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
基于电卡效应的迅速冷热响应驱动双向形状记忆材料与结构研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
国际货币体系现状分析与未来展望:基于货币搜索理论和SWIFT数据的研究
- 批准号:72003209
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
迅速冷却等离子体射流中粒子形成过程的实验研究
- 批准号:11975185
- 批准年份:2019
- 资助金额:65 万元
- 项目类别:面上项目
草莓通过花瓣迅速脱落逃避灰葡萄孢侵染的机制研究
- 批准号:31701882
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
伯谢克辛甜瓜果肉迅速软化机理研究
- 批准号:31660464
- 批准年份:2016
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
- 批准号:
2332721 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
- 批准号:
2332661 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
- 批准号:
2332662 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
- 批准号:
2332722 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
- 批准号:
2229471 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant