Discrete Geometry and Extremal Combinatorics

离散几何和极值组合

基本信息

  • 批准号:
    2246659
  • 负责人:
  • 金额:
    $ 18.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

This project concerns several open problems at the intersection of discrete geometry and extremal combinatorics. Questions in discrete geometry traditionally involve sets of points, lines, triangles, planes, or other simple geometric objects, and many of them are tantalizingly natural and worth studying for their own sake. Some of them, such as the structure of 3-dimensional convex polytopes, go back to the antiquity, while others are also intimately connected with various different areas of modern mathematics, in particular extremal combinatorics. In recent years, these rich interactions have led to several remarkable developments between these two fields, and the goal of this project is to essentially capitalize as much as possible on this momentum. The first part of this project concerns Ramsey theory around the Erdős-Szekeres problem about the existence of large convex polytopes in finite configurations of point sets in general position, with an eye particularly towards establishing new upper bounds for various classical Ramsey numbers for graphs and hypergraphs. The second part of this proposal is about incidence geometry, an area with roots in Turán-type problems in extremal graph theory which is also fundamentally connected with other branches of mathematics, such as harmonic analysis and number theory, via the so-called sum-product phenomenon. The PI intends to further develop these connections by studying several old and new natural problems that arise on the different sides of this story. Examples of motivating (longstanding) questions include: the Zarankiewicz problem, the unit distance conjecture, and the Heilbronn triangle problem. As a byproduct, the PI also plans to develop new tools that could further the interplay between algebraic, analytic, combinatorial, and probabilistic methods in discrete mathematics. The PI plans to involve graduate students in this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及离散几何和极值组合交叉处的几个开放问题传统上,离散几何涉及点、线、三角形、平面或其他简单几何对象的集合,其中许多问题非常自然,值得研究。其中一些,例如三维凸多面体的结构,可以追溯到古代,而另一些也与现代数学的各个不同领域有关,特别是极值组合学。近年来,这些丰富的相互作用导致了这两个领域之间的一些显着发展,该项目的目标是尽可能地利用这一势头。该项目的第一部分涉及围绕 Erdős-Szekeres 的拉姆齐理论。关于一般位置的点集的有限配置中存在大凸多面体的问题,特别是建立图和超图的各种经典拉姆齐数的新上限。该提案的第二部分是关于关联几何的。该领域源于极值图论中的图兰型问题,该领域也通过所谓的和积现象与调和分析和数论等其他数学分支有着根本的联系。PI 打算进一步发展这些联系。通过研究这个故事的不同方面出现的几个新旧自然问题,激励性(长期存在)问题的例子包括:扎兰凯维奇问题、单位距离猜想和海尔布隆三角问题作为副产品。还计划开发新工具,以促进离散数学中代数、分析、组合和概率方法之间的相互作用。PI 计划让研究生参与该项目。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式获得支持。使用基金会的智力价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrei Pohoata其他文献

Andrei Pohoata的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

奇异黎曼叶状结构的微分几何学研究
  • 批准号:
    12371048
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于代数几何学的统计学习理论研究
  • 批准号:
    12171382
  • 批准年份:
    2021
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
非欧几何学的若干历史问题研究
  • 批准号:
    12161086
  • 批准年份:
    2021
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于拓扑几何学的致密油藏跨尺度润湿机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
中天山乌拉斯台韧性剪切带几何学与运动学构造解析
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Geometry and collapsing theory of Alexandrov spaces
亚历山德罗夫空间的几何和塌陷理论
  • 批准号:
    22KJ2099
  • 财政年份:
    2023
  • 资助金额:
    $ 18.95万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Extremal problems in geometry
几何中的极值问题
  • 批准号:
    RGPIN-2022-03649
  • 财政年份:
    2022
  • 资助金额:
    $ 18.95万
  • 项目类别:
    Discovery Grants Program - Individual
Extremal problems in geometry
几何中的极值问题
  • 批准号:
    RGPIN-2022-03649
  • 财政年份:
    2022
  • 资助金额:
    $ 18.95万
  • 项目类别:
    Discovery Grants Program - Individual
Extremal combinatorics meets finite geometry
极值组合满足有限几何
  • 批准号:
    DE190100666
  • 财政年份:
    2019
  • 资助金额:
    $ 18.95万
  • 项目类别:
    Discovery Early Career Researcher Award
Conference on Finite Geometry and Extremal Combinatorics
有限几何与极值组合学会议
  • 批准号:
    1916466
  • 财政年份:
    2019
  • 资助金额:
    $ 18.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了