Collaborative Research: Design of High Entropy Alloy Electrocatalysts for Mineralization of Total Organic Carbon in Municipal Wastewater

合作研究:城市废水中总有机碳矿化的高熵合金电催化剂设计

基本信息

  • 批准号:
    2230165
  • 负责人:
  • 金额:
    $ 43.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Advanced oxidation processes (AOPs) such as the commercial UV/AOP process are increasingly being utilized as a final treatment barrier to remove organic micropollutants (OMPs) in advanced water reclamation and reuse plants in the United States and worldwide. In a typical UV/AOP process, UV-C light (200-280 nm in wavelength) is combined with an oxidant (e.g., hydrogen peroxide) to generate OH free radicals that can destroy and mineralize OMPs including personal care products, pharmaceuticals, pesticides, herbicides, etc. Current commercial UV/AOPs require significant amounts of energy to operate, have high CapEx and OpEx or generate toxic products such as bromate when treating water containing bromide ions. Electrochemical advanced oxidation processes (EAOPs) have emerged as promising technologies that can destroy OMPs using electricity to generate OH radicals at the surface of catalytic electrodes. Compared to UV/AOPs, EAOPs have several advantages including high efficiency, modular design, and ease of automation and operation using electricity from clean renewable energy sources. However, the stability, lifetime, and high cost of the required catalytic electrodes (electrocatalysts) are major impediments to the implementation of EAOPs in water reclamation and reuse plants. To address these challenges, the Principal Investigators (PIs) of this project propose to leverage the unique properties of high entropy alloys (e.g., high strength and corrosion resistance) to design, synthesize, and optimize a new class of electrocatalysts for EAOPs. The successful completion of this project will benefit society through the generation of fundamental knowledge and development of novel electrocatalysts to improve the efficiency and cost effectiveness of using EAOPs in water reclamation and reuse systems. Additional benefits to society will be achieved through student education and training including the mentoring of two graduate students at the University of Miami and one undergraduate student at Florida International University. High entropy alloying has emerged as a promising process for the preparation of electrodes with catalytic activity and corrosion resistance comparable to those of noble metals (e.g., Pt and Ir) using earth-abundant metals as precursors. Thus, high entropy alloys (HEAs) provide unique opportunities to develop more stable, durable, and cost-effective catalytic electrodes (electrocatalysts) for electrochemical advanced oxidation processes (EAOPs). However, it is challenging to find the right alloy composition that produces the target HEA electrocatalyst given that HEAs are typically formed by mixing/alloying five or more elements. To address this challenge, the Principal Investigators (PIs) of this project propose to combine atomistic modeling and simulations with experimentation to design, synthesize, and optimize new HEA electrocatalysts for EAOPs using earth-abundant metals. The specific aims of the research are to (1) design earth-abundant HEAs for the electrocatalytic generation of hydroxyl (OH) radicals in aqueous solutions and mixtures by screening a large design space via atomistic modeling/simulations and thermodynamic analysis; (2) evaluate and optimize electrocatalyst structure and performance (activity, corrosion resistance, and durability) using fabrication and bench scale electrochemical and wet chemical experiments, and (3) conduct kinetic and mechanistic investigations of the oxidation of selected organic micropollutants (OMPs) by HEA electrocatalysts using radical scavenging/trapping assays and non-targeted high-resolution mass spectrometry. The successful completion of this research has the potential for transformative impact through the generation of composition-structure-performance relationships to guide the design and development of HEA electrocatalysts for water reuse and reclamation using electrochemical oxidation. To implement the education and training goals of the project, the PIs propose to leverage existing programs at the University of Miami and Florida International University to recruit and mentor undergraduate students from underrepresented groups to work on the project. In addition, the PIs plan to develop and deliver STEM immersion programs to inner-city and underrepresented high school students including presentations at K-12 schools and the Frost Museum of Science in Miami.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高级氧化过程(AOP)(例如商业UV/AOP工艺)越来越被用作在美国和全球范围内消除先进的水填料和再利用植物中有机微污染物(OMP)的最终治疗障碍。在典型的UV/AOP过程中,UV-C Light(波长为200-280 nm)与氧化剂(例如,过氧化氢)结合使用,以产生可以破坏和矿物质的OH自由基,包括个人护理产品,包括个人护理产品,药物,药品,农药,除草剂等。当前的商业紫外线/AOP需要大量的能量才能运行,在处理含有溴化物离子的水时,具有较高的资本和OPEX或产生有毒产品,例如Br​​omate。电化学先进的氧化过程(EAOPS)已成为有前途的技术,可以使用电力破坏OMP,以在催化电极的表面产生OH自由基。与紫外线/AOP相比,Eaops具有多个优点,包括高效率,模块化设计以及使用清洁可再生能源的电力的自动化和操作。但是,所需的催化电极(电催化剂)的稳定性,寿命和高成本是对水在水回和再利用植物中实施的主要障碍。为了应对这些挑战,该项目的主要研究人员(PIS)建议利用高熵合金(例如,高强度和耐耐药性)的独特性能来设计,合成和优化新型的EAOPS电催化剂。该项目的成功完成将通过产生新型电催化剂的基本知识和发展,以提高在水回收和再利用系统中使用EAOPS的效率和成本效益,从而使社会受益。将通过学生教育和培训来实现社会的其他好处,包括在迈阿密大学指导两名研究生以及佛罗里达国际大学的一名本科生。高熵合金已成为一种具有催化活性和耐腐蚀性的电极制备的有前途的过程,该过程与贵金属(例如Pt和ir)的抗腐蚀性相当。因此,高熵合金(HEAS)为电化学晚期氧化过程(EAOPS)提供了更稳定,耐用和具有成本效益的催化电极(电催化剂)的独特机会。但是,鉴于HEAS通常是通过混合/合金五个或更多元件形成的,因此找到可产生目标HEALECATALYS的合金组合物是一项挑战。为了应对这一挑战,该项目的主要研究人员(PIS)建议将原子建模和仿真与实验,以设计,合成和优化使用地球丰富金属的新型Hea电催化剂。该研究的具体目的是(1)通过水溶液和混合物在水溶液和混合物中的电催化产生的含量生成的地球设计中,通过原子建模/模拟和热力学分析来筛选大型设计空间; (2)使用制造和基准尺度的电化学和湿化学实验评估和优化电催化剂的结构和性能(活性,耐腐蚀性和耐用性),(3)对选定有机微量散发剂(OMPS)的氧化进行动力学和机械研究使用自由基清除/捕获测定法和非靶向高分辨率质谱法的HEE电催化剂。这项研究的成功完成具有通过产生组成结构 - 性能关系的产生的变化影响,以指导使用电化学氧化的水电催化剂的设计和开发,以进行水再利用和回收。 为了实施该项目的教育和培训目标,PIS提议利用迈阿密大学和佛罗里达国际大学的现有计划,招募来自代表性不足的团体的招募和导师本科生来从事该项目。此外,PIS计划将STEM沉浸计划开发给市区和代表性不足的高中生,包括K-12学校的演讲和迈阿密霜科学博物馆。该奖项反映了NSF的法定任务,并被认为是值得的。通过基金会的智力优点和更广泛的影响评估标准通过评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Francisco Raymo其他文献

Francisco Raymo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Francisco Raymo', 18)}}的其他基金

Collaborative Research: Spectral Discrimination of Single Molecules with Photoactivatable Fluorescence
合作研究:利用光激活荧光对单分子进行光谱辨别
  • 批准号:
    2246547
  • 财政年份:
    2023
  • 资助金额:
    $ 43.95万
  • 项目类别:
    Standard Grant
Photochemical Strategies to Activate Far-Red Fluorescence with Green Light
用绿光激活远红荧光的光化学策略
  • 批准号:
    1954430
  • 财政年份:
    2020
  • 资助金额:
    $ 43.95万
  • 项目类别:
    Continuing Grant
Photochemical Strategies with Supramolecular Assistance to Monitor Cellular Dynamics in Living Organism
超分子辅助光化学策略监测活体细胞动力学
  • 批准号:
    1505885
  • 财政年份:
    2016
  • 资助金额:
    $ 43.95万
  • 项目类别:
    Continuing Grant
Blinking Fluorophores by Design
闪烁荧光团的设计
  • 批准号:
    1049860
  • 财政年份:
    2011
  • 资助金额:
    $ 43.95万
  • 项目类别:
    Continuing Grant
Luminescent Switches for Fluorescence Nanoscopy
用于荧光纳米显微镜的发光开关
  • 批准号:
    0749840
  • 财政年份:
    2008
  • 资助金额:
    $ 43.95万
  • 项目类别:
    Continuing Grant
CAREER: From Designed Molecules to Functional Materials and Innovative Devices
职业:从设计分子到功能材料和创新设备
  • 批准号:
    0237578
  • 财政年份:
    2003
  • 资助金额:
    $ 43.95万
  • 项目类别:
    Continuing Grant

相似国自然基金

光驱动自由基酶的催化机理研究和理性设计
  • 批准号:
    22337006
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
催化烯烃直接硝化的P450过氧化物酶的分子设计与反应机制研究
  • 批准号:
    22307125
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
增材制造镁合金点阵结构设计与降解速率控制在围关节骨缺损修复中作用机理研究
  • 批准号:
    82372092
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
碳纳米管限域的钴基费托合成催化剂的设计及其催化性能研究
  • 批准号:
    22362030
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
交联羧酸功能化离子液体复合膜的设计及H2S/CO2分离性能研究
  • 批准号:
    22308145
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
  • 批准号:
    2348641
  • 财政年份:
    2024
  • 资助金额:
    $ 43.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 43.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Meshed GNSS-Acoustic Array Design for Lower-Cost Dense Observation Fields
合作研究:用于低成本密集观测场的网状 GNSS 声学阵列设计
  • 批准号:
    2321297
  • 财政年份:
    2024
  • 资助金额:
    $ 43.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 43.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 43.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了