Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment

合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法

基本信息

  • 批准号:
    2229344
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

The operational landscape of electric power systems is currently experiencing a profound transformation driven by various factors, including the integration of renewable energy sources, the need for a cleaner energy economy, and the urgency to address the climate crisis. This project aims to lay the mathematical groundwork necessary to harness the full potential of deep machine learning approaches in enhancing power system operations, particularly in relation to renewable energy, such as wind and solar generation. The research will develop a new suite of distributed optimization tools that will empower large-scale power system operations to manage uncertainty while incorporating renewable energy resources effectively. The new algorithms will potentially transform operational practices within the power system. At the same time, the results will increase public awareness and understanding among stakeholders, regulators, policymakers, and market participants. The successful completion of this project will enable power system operators to adopt cutting-edge algorithms that significantly enhance their operational practices with renewable generation. The project will provide training and outreach opportunities to students from both institutions, particularly those from underrepresented groups in STEM. The project aims to develop and validate deep-learning-enabled distributed stochastic algorithms. These algorithms will solve large-scale, stochastic security-constrained unit commitment problems within power systems. Specifically, the project will focus on the following objectives: (i) the design of a holistic, three-stage, deep neural network-based machine learning approach; (ii) the solution strategies based on the hybrid distributed parameter system control theory; and (iii) extensive validations of the proposed algorithms using large-scale real-world power system datasets. The research will advance the field by introducing innovative techniques to address the challenges associated with power system operation under uncertainty.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当前,在可再生能源并网、清洁能源经济的需求以及应对气候危机的紧迫性等多种因素的推动下,电力系统的运行格局正在经历深刻的变革。该项目旨在奠定必要的数学基础,以充分利用深度机器学习方法的潜力来增强电力系统的运行,特别是与风能和太阳能发电等可再生能源相关的运行。该研究将开发一套新的分布式优化工具,使大规模电力系统运营能够管理不确定性,同时有效地整合可再生能源。新算法将有可能改变电力系统内的操作实践。同时,研究结果将提高利益相关者、监管者、政策制定者和市场参与者的公众意识和理解。该项目的成功完成将使电力系统运营商能够采用尖端算法,从而显着增强其可再生能源发电的运营实践。该项目将为两所院校的学生,特别是来自 STEM 领域代表性不足群体的学生提供培训和外展机会。该项目旨在开发和验证支持深度学习的分布式随机算法。这些算法将解决电力系统内大规模、随机安全约束的机组组合问题。具体来说,该项目将重点关注以下目标:(i)设计一个整体的、三阶段的、基于深度神经网络的机器学习方法; (ii) 基于混合分布参数系统控制理论的求解策略; (iii) 使用大规模真实世界电力系统数据集对所提出的算法进行广泛验证。该研究将通过引入创新技术来解决与不确定性下电力系统运行相关的挑战,从而推动该领域的发展。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hongyu Wu其他文献

“How do I survive exclusion?” Voices of students with disabilities at China’s top universities
“中国顶尖大学残疾学生的声音,我该如何生存?”
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huan Li;Jiaying Lin;Hongyu Wu;Zhaojun Li;Mengxue Han
  • 通讯作者:
    Mengxue Han
The DNA site utilized by bacteriophage P22 for initiation of DNA packaging
噬菌体 P22 用于启动 DNA 包装的 DNA 位点
  • DOI:
    10.1046/j.1365-2958.2002.03114.x
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Hongyu Wu;L. Sampson;R. Parr;S. Casjens
  • 通讯作者:
    S. Casjens
Efficient Electrochemical Performance Based on Nitrogen-Doped Graphene Supported Pt-Sn for Ethanol Electrocatalytic Oxidation
基于氮掺杂石墨烯负载 Pt-Sn 的乙醇电催化氧化的高效电化学性能
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    D;an Ren;Jiexin Fan;Hongyu Wu;Xiaomin Wang
  • 通讯作者:
    Xiaomin Wang
Factors associated with the incompliance with mammogram screening among individuals with a family history of breast cancer or ovarian cancer
有乳腺癌或卵巢癌家族史的个体不遵守乳房X光检查筛查的相关因素
  • DOI:
    10.1007/s10549-006-9298-5
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Hongyu Wu;K. Zhu;I. Jatoi;Mona Shah;C. Shriver;J. Potter
  • 通讯作者:
    J. Potter
Improved electrocatalyticnbsp; performance based on nitrogen-doped graphene supported Pt-Sn for ethanol
改进的电催化
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Xiaomin Wang;Hongyu Wu
  • 通讯作者:
    Hongyu Wu

Hongyu Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hongyu Wu', 18)}}的其他基金

CAREER: Towards attack-resilient cyber-physical smart grids: moving target defense for data integrity attack detection, identification and mitigation
职业:迈向抗攻击的网络物理智能电网:用于数据完整性攻击检测、识别和缓解的移动目标防御
  • 批准号:
    2146156
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
RII Track-4: Robust Matrix Completion State Estimation in Low-Observability Distribution Systems under False Data Injection Attacks
RII Track-4:虚假数据注入攻击下低可观测性分布系统中的鲁棒矩阵完成状态估计
  • 批准号:
    1929147
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
  • 批准号:
    2229011
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
  • 批准号:
    2229345
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
  • 批准号:
    2229012
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
  • 批准号:
    2229074
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
  • 批准号:
    2229073
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了