CAREER: Towards attack-resilient cyber-physical smart grids: moving target defense for data integrity attack detection, identification and mitigation
职业:迈向抗攻击的网络物理智能电网:用于数据完整性攻击检测、识别和缓解的移动目标防御
基本信息
- 批准号:2146156
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF CAREER project aims to provide a theoretical foundation and design guiding principles that will unlock the full potential of moving target defense (MTD) approaches and significantly enhance the resiliency of cyber-physical power grids under cyber data attacks. The project will transform existing bulk transmission system operations that rely on limited cyber-layer security mechanisms to proactive defense-in-depth approaches in both the cyber and physical layers using widely-deployed smart devices. The intellectual merits of the project include developing novel optimization, graph theory, low-rank matrix theory, and machine learning-based methods for optimal planning and operation of moving target defense devices, rapid detection, accurate identification, and robust mitigation of cyber data integrity attacks. The broader impacts of the project include promoting public awareness and understanding of smart grid cybersecurity, contributing to power engineering education, and preparing a diverse learning community, including middle and high school students, with requisite knowledge and skillsets to tackle future power grid security challenges. The successful completion of this project will provide power system operators with new tools to enhance situational awareness and better defend the power grid against cyber data attacks.MTD is an emerging concept originally introduced for computer and communication networks. Existing MTD approaches are limited to the cyber layer of a cyber-physical system. However, if field devices or internal communication networks are physically compromised, adverse consequences are trigged within the physical layer. Therefore, the cyber-layer MTD alone is inadequate for securing real-world power grids with significant attack surfaces. The goal of this CAREER project is to develop and validate physical-layer MTD approaches to detect, identify, and mitigate data integrity attacks by strong adversaries with state-of-the-art machine learning capabilities. The proposed MTD approaches feature three major technical innovations: 1) A minimum spanning tree-enabled planning scheme that maximizes MTD detection effectiveness while considering system economic and reliability metrics; 2) A novel alternating current optimal power flow operational framework, constrained by scalable voltage stability approaches, to ensure the MTD hiddenness and detection performance; and 3) A low-rank matrix decomposition method assisted by MTD approaches that radically improves the attack identification speed and measurement recovery accuracy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 NSF 职业项目旨在提供理论基础和设计指导原则,以释放移动目标防御(MTD)方法的全部潜力,并显着增强网络物理电网在网络数据攻击下的弹性。该项目将把依赖有限网络层安全机制的现有大容量传输系统操作转变为使用广泛部署的智能设备在网络和物理层主动进行深度防御的方法。该项目的智力优势包括开发新颖的优化、图论、低秩矩阵理论和基于机器学习的方法,用于移动目标防御装置的优化规划和操作、快速检测、准确识别和网络数据完整性的稳健缓解攻击。该项目的更广泛影响包括提高公众对智能电网网络安全的认识和理解,为电力工程教育做出贡献,并为包括初高中生在内的多元化学习社区做好应对未来电网安全挑战所需的知识和技能的准备。该项目的成功完成将为电力系统运营商提供新的工具,以增强态势感知并更好地保护电网免受网络数据攻击。MTD是一个最初为计算机和通信网络引入的新兴概念。现有的 MTD 方法仅限于网络物理系统的网络层。然而,如果现场设备或内部通信网络在物理上受到损害,则会在物理层内引发不利后果。因此,仅网络层 MTD 不足以保护具有重大攻击面的现实世界电网。该 CAREER 项目的目标是开发和验证物理层 MTD 方法,以检测、识别和减轻具有最先进机器学习能力的强大对手发起的数据完整性攻击。所提出的MTD方法具有三项主要技术创新:1)最小生成树支持的规划方案,在考虑系统经济性和可靠性指标的同时最大化MTD检测有效性; 2)一种新颖的交流最优潮流运算框架,以可扩展的电压稳定方法为约束,以确保MTD隐藏性和检测性能; 3)MTD方法辅助的低秩矩阵分解方法,从根本上提高了攻击识别速度和测量恢复精度。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,认为值得支持标准。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-driven FDI Attacks: A Stealthy Approach to Subvert SVM Detectors in Power System
数据驱动的 FDI 攻击:颠覆电力系统中 SVM 检测器的隐秘方法
- DOI:10.1109/kpec58008.2023.10215462
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Liu, Bo;Wu, Hongyu;Yang, Qihui;Liu, Xuebo;Liu, Yajing
- 通讯作者:Liu, Yajing
Matrix-Completion-Based False Data Injection Attacks Against Machine Learning Detectors
- DOI:10.1109/tsg.2023.3308339
- 发表时间:2024-03
- 期刊:
- 影响因子:9.6
- 作者:Bo Liu;Hongyu Wu;Qihui Yang;Hang Zhang;Yajing Liu;Y. Zhang
- 通讯作者:Bo Liu;Hongyu Wu;Qihui Yang;Hang Zhang;Yajing Liu;Y. Zhang
Load Margin Constrained Moving Target Defense against False Data Injection Attacks
负载裕度约束移动目标防御虚假数据注入攻击
- DOI:10.1109/greentech52845.2022.9772024
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhang, Hang;Fulk, Noah;Liu, Bo;Edmonds, Lawryn;Liu, Xuebo;Wu, Hongyu
- 通讯作者:Wu, Hongyu
Voltage Stability Constrained Moving Target Defense Against Net Load Redistribution Attacks
- DOI:10.1109/tsg.2022.3170839
- 发表时间:2022-09
- 期刊:
- 影响因子:9.6
- 作者:Hang Zhang;Bo Liu;Xuebo Liu;A. Pahwa;Hongyu Wu
- 通讯作者:Hang Zhang;Bo Liu;Xuebo Liu;A. Pahwa;Hongyu Wu
Random-Enabled Hidden Moving Target Defense against False Data Injection Alert Attackers
- DOI:10.3390/pr11020348
- 发表时间:2023-01
- 期刊:
- 影响因子:3.5
- 作者:Bo Liu;Hongyu Wu;Qihui Yang;Hang Zhang
- 通讯作者:Bo Liu;Hongyu Wu;Qihui Yang;Hang Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongyu Wu其他文献
“How do I survive exclusion?” Voices of students with disabilities at China’s top universities
“中国顶尖大学残疾学生的声音,我该如何生存?”
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Huan Li;Jiaying Lin;Hongyu Wu;Zhaojun Li;Mengxue Han - 通讯作者:
Mengxue Han
The DNA site utilized by bacteriophage P22 for initiation of DNA packaging
噬菌体 P22 用于启动 DNA 包装的 DNA 位点
- DOI:
10.1046/j.1365-2958.2002.03114.x - 发表时间:
2002 - 期刊:
- 影响因子:3.6
- 作者:
Hongyu Wu;L. Sampson;R. Parr;S. Casjens - 通讯作者:
S. Casjens
Efficient Electrochemical Performance Based on Nitrogen-Doped Graphene Supported Pt-Sn for Ethanol Electrocatalytic Oxidation
基于氮掺杂石墨烯负载 Pt-Sn 的乙醇电催化氧化的高效电化学性能
- DOI:
- 发表时间:
- 期刊:
- 影响因子:2.5
- 作者:
D;an Ren;Jiexin Fan;Hongyu Wu;Xiaomin Wang - 通讯作者:
Xiaomin Wang
Factors associated with the incompliance with mammogram screening among individuals with a family history of breast cancer or ovarian cancer
有乳腺癌或卵巢癌家族史的个体不遵守乳房X光检查筛查的相关因素
- DOI:
10.1007/s10549-006-9298-5 - 发表时间:
2006 - 期刊:
- 影响因子:3.8
- 作者:
Hongyu Wu;K. Zhu;I. Jatoi;Mona Shah;C. Shriver;J. Potter - 通讯作者:
J. Potter
Improved electrocatalyticnbsp; performance based on nitrogen-doped graphene supported Pt-Sn for ethanol
改进的电催化
- DOI:
- 发表时间:
- 期刊:
- 影响因子:6.6
- 作者:
Xiaomin Wang;Hongyu Wu - 通讯作者:
Hongyu Wu
Hongyu Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongyu Wu', 18)}}的其他基金
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
- 批准号:
2229344 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RII Track-4: Robust Matrix Completion State Estimation in Low-Observability Distribution Systems under False Data Injection Attacks
RII Track-4:虚假数据注入攻击下低可观测性分布系统中的鲁棒矩阵完成状态估计
- 批准号:
1929147 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
KLF5在前列腺肿瘤管腔祖细胞向神经内分泌细胞转变中的功能和机制研究
- 批准号:82303045
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用化学遗传学研究植物的向重力性
- 批准号:32370306
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
骤旱向季节性干旱演变的驱动机制及其对植被的影响机理
- 批准号:52309032
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TEA结构域转录因子2调控干细胞亚稳态向基态多能性转变的机理研究
- 批准号:32300466
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CXCR5依赖的边缘区B细胞向滤泡树突状细胞呈递外泌体引发心脏移植排斥的研究
- 批准号:82300460
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CRII: SaTC: Towards Data-effective and Cost-efficient Security Attack Detections
CRII:SaTC:迈向数据有效且经济高效的安全攻击检测
- 批准号:
2245968 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Towards Attack-Resilient Vision-Guided Unmanned Aerial Vehicles: An Observability Analysis Approach
合作研究:迈向抗攻击视觉引导无人机:一种可观测性分析方法
- 批准号:
2137764 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Towards fault tolerance and attack resiliency in cyber-physical energy systems through learning from data streams under harsh learning conditions
通过在恶劣的学习条件下从数据流中学习,实现网络物理能源系统的容错和攻击弹性
- 批准号:
RGPIN-2021-02968 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Towards Attack-Resilient Vision-Guided Unmanned Aerial Vehicles: An Observability Analysis Approach
合作研究:迈向抗攻击视觉引导无人机:一种可观测性分析方法
- 批准号:
2137753 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Towards fault tolerance and attack resiliency in cyber-physical energy systems through learning from data streams under harsh learning conditions
通过在恶劣的学习条件下从数据流中学习,实现网络物理能源系统的容错和攻击弹性
- 批准号:
DGECR-2021-00284 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Discovery Launch Supplement