BRITE Relaunch: Improving Structural Health by Advancing Interpretable Machine Learning for Nonlinear Dynamics
BRITE 重新启动:通过推进非线性动力学的可解释机器学习来改善结构健康
基本信息
- 批准号:2227495
- 负责人:
- 金额:$ 37.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Boosting Research Ideas for Transformative and Equitable Advances in Engineering (BRITE) Relaunch award will focus on advancing interpretable machine learning to match modeling accuracy with transparency. This will provide structural engineers with a superior and trustworthy tool to model nonlinear dynamical systems. Modeling the complex behaviors of structures and materials under various types of dynamic loads remains a major challenge for smart structures, structural control, nonlinear system identification, damage detection, and earthquake engineering. Machine learning is becoming a popular approach for meeting this challenge. However, there is a significant gap between knowledge of the physics of these systems, the engineering practice design of these systems, and the models produced from machine learning methods. Machine learning lacks interpretability and transparency. This research project will develop systematic solutions with reasoning based on the engineers’ knowledge and training, physics-informed, and empowering the engineers’ judgment. This research directly benefits society in terms of improving infrastructure health, mitigating the consequences of earthquake, wind hazards, and climate change.This research project builds upon the project leader’s past work to advance “nonlinear static function approximation using interpretable machine learning”, given its direct use in approximating nonlinear constitutive relations and its use in approximating nonlinear integrands in ordinary differential equations for nonlinear dynamics. To achieve interpretable and physics-informed machine learning methods, this research project will create new algorithms and implementation procedures. Neuromanifold theories in advanced applied mathematics will be employed to make the training process of sigmoidal neural networks interpretable. Graph theory will be leveraged to create knowledge graphs so that nonlinear static function approximation using interpretable machine learning can be automated during initialization to approximate nonlinear static functions and can be used for deep learning. In addition to extensive cross-validations, a major application of the project's approach will be investigated by using real-world data in a digital twin setting, the state-of-the-art system-level modeling framework in structural engineering. Also, a comprehensive laboratory demonstration and validation will be carried out using timber beam-column joints to generate broad interest in the broad relevance of nonlinear dynamics in structural engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项“促进工程变革和公平进步的研究理念”(BRITE) 重新启动奖将重点关注推进可解释的机器学习,以将建模准确性与透明度相匹配,这将为结构工程师提供一种卓越且值得信赖的工具来对复杂的非线性动力系统进行建模。结构和材料在各种类型的动态载荷下的行为仍然是智能结构、结构控制、非线性系统识别、损伤检测和地震工程的主要挑战。然而,机器学习正在成为应对这一挑战的流行方法。重要的这些系统的物理知识、这些系统的工程实践设计以及机器学习方法产生的模型之间的差距缺乏可解释性和透明度。该研究项目将基于工程师的知识和推理来开发系统的解决方案。这项研究在改善基础设施健康、减轻地震、风灾和气候变化的后果方面直接造福于社会。该研究项目以项目负责人过去的工作为基础,以推进。 “非线性静态函数使用可解释的机器学习进行近似”,考虑到它直接用于近似非线性本构关系以及近似非线性动力学常微分方程中的非线性被积函数,为了实现可解释和基于物理的机器学习方法,该研究项目将创建新的算法和方法。将采用高级应用数学中的神经流形理论来使 S 型神经网络的训练过程可解释,从而创建知识。图形,以便在初始化过程中可以自动使用可解释的机器学习来逼近非线性静态函数,并且可以用于深度学习。除了广泛的交叉验证之外,该项目方法的主要应用将通过使用真实数据进行研究。 -数字孪生环境中的世界数据,结构工程中最先进的系统级建模框架此外,将使用木梁柱节点进行全面的实验室演示和验证,以引起人们对结构工程的广泛兴趣。广泛的相关性该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jin-Song Pei其他文献
Jin-Song Pei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jin-Song Pei', 18)}}的其他基金
FPGA and Microprocessor-Based Smart Wireless Sensing with Embedded Nonlinear Algorithms for Structural Health Monitoring
基于 FPGA 和微处理器的智能无线传感,具有嵌入式非线性算法,用于结构健康监测
- 批准号:
0626401 - 财政年份:2006
- 资助金额:
$ 37.01万 - 项目类别:
Standard Grant
Handling Noise-Contaminated Data and Nonunique Identification Results in Wireless Sensor Networks for Structural Health Monitoring
处理结构健康监测无线传感器网络中的噪声污染数据和非唯一识别结果
- 批准号:
0332350 - 财政年份:2003
- 资助金额:
$ 37.01万 - 项目类别:
Standard Grant
相似国自然基金
大规模高次多项式特征值问题的求解及应用
- 批准号:11201020
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
转录因子与染色质的解离和重新结合对兔胚胎发育的影响
- 批准号:31101048
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
BRITE Relaunch: Using Cell Shape and Cytoskeletal Organization for Understanding and Predicting Cellular Force Generation
BRITE 重新推出:利用细胞形状和细胞骨架组织来理解和预测细胞力的产生
- 批准号:
2227605 - 财政年份:2023
- 资助金额:
$ 37.01万 - 项目类别:
Standard Grant
BRITE Relaunch: Examining the Role of Mechanotransduction in Smooth Muscle Cell Phenotype Modulation
BRITE 重新推出:检查机械转导在平滑肌细胞表型调节中的作用
- 批准号:
2422794 - 财政年份:2023
- 资助金额:
$ 37.01万 - 项目类别:
Standard Grant
BRITE Relaunch: Leak-Proof Tubular Redox Flow Batteries for the Low-Cost and Fire-Safe Storage of Solar and Wind Energy
BRITE 重新推出:防漏管式氧化还原液流电池,用于太阳能和风能的低成本且防火存储
- 批准号:
2227265 - 财政年份:2023
- 资助金额:
$ 37.01万 - 项目类别:
Standard Grant
BRITE Relaunch: Compact Network Flows for Critical Infrastructure Engineering
BRITE 重新启动:关键基础设施工程的紧凑网络流程
- 批准号:
2227548 - 财政年份:2023
- 资助金额:
$ 37.01万 - 项目类别:
Standard Grant
BRITE Relaunch: A Physics-Based Simulation Model for Exploring Community Resilience to Wildfires
BRITE 重新启动:基于物理的模拟模型,用于探索社区对野火的抵御能力
- 批准号:
2227315 - 财政年份:2023
- 资助金额:
$ 37.01万 - 项目类别:
Standard Grant