PIPP Phase I: Comprehensive, Integrated, Intelligent System for Early and Accurate Pandemic Prediction, Prevention, and Preparation at Personal and Population Levels
PIPP第一阶段:全面、集成、智能的系统,用于个人和人群层面的早期、准确的流行病预测、预防和准备
基本信息
- 批准号:2200255
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The COVID-19 pandemic demonstrates that our country desperately needs a next generation public health system that can quickly adapt to, and learn from an expected or not-expected public health crisis. By taking advantage of recent advances in artificial intelligence (AI), such a system shall be able to predict, detect, and respond to rapidly evolving emergent public health crises, and resume its prior performance level rapidly in a sustainable and scalable way. Towards that goal, this project aims to tackle the grand challenge of sociotechnical design of nation-wide digital infrastructure for pandemic prediction and prevention, which is built on the foundation of privacy and inclusiveness. A multi-disciplinary team of researchers from multiple institutions will lead a broad range of fundamental and integrated research projects that incorporate both micro-level granular data and population-level data to tackle the grand challenge from different aspects. A set of activities, including meetings, workshops, and seminars, have been carefully planned to create an effective research team, to engage diverse and inclusive stakeholders (e.g., public health departments, health care/hospital systems, industrial/private sectors, and geographically and ethnically diverse community stakeholders), and to educate and train next generation researchers to conduct team science.In order to develop a digital, autonomous, and distributed infrastructure that is also privacy preserving, the team will focus on the architecture for data storage and collection, as well as privacy enablers for data sharing. The data collection infrastructure and privacy enabler technologies will (i) carefully balance data utility and privacy; (ii) balance vulnerability for known privacy risks and institutional needs to protect sensitive data; and (iii) allow individuals (data donors) to have full control over their data and to give informed consent while sharing their data in different ways with different data collectors (researchers). In addition, the team will develop a set of highly integrated research projects that work coordinately and intelligently for pandemic prevention that also broaden participation and inclusion. The projects include (i) early detection using wearable devices in combination with population level social, economic, cultural and environmental indicators; (ii) mathematical modeling of pathogen transmission, hotspot prediction based on spatio-temporal analysis, and mitigation; (iii) multi-level and multi-faceted surveillance; and (iv) technological preparation for new diseases based on drug repositioning. The two aims are complementary to each other and work synergistically to achieve the ultimate goal of early and accurate pandemic prediction, prevention, and preparation at personal and population levels that will also ensure privacy and inclusion.This award is supported by the cross-directorate Predictive Intelligence for Pandemic Prevention Phase I (PIPP) program, which is jointly funded by the Directorates for Biological Sciences (BIO), Computer Information Science and Engineering (CISE), Engineering (ENG) and Social, Behavioral and Economic Sciences (SBE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
COVID-19 大流行表明,我国迫切需要下一代公共卫生系统,能够快速适应预期或意外的公共卫生危机并从中吸取教训。通过利用人工智能(AI)的最新进展,这样的系统应能够预测、检测和响应快速演变的突发公共卫生危机,并以可持续和可扩展的方式快速恢复其先前的性能水平。为了实现这一目标,该项目旨在应对建立在隐私和包容性基础上的用于大流行预测和预防的全国数字基础设施的社会技术设计的巨大挑战。来自多个机构的多学科研究团队将领导广泛的基础和综合研究项目,结合微观层面的颗粒数据和人口层面的数据,从不同方面应对这一巨大挑战。精心策划了一系列活动,包括会议、讲习班和研讨会,以创建有效的研究团队,吸引多元化和包容性的利益相关者(例如公共卫生部门、医疗保健/医院系统、工业/私营部门和地理区域)。和种族多元化的社区利益相关者),并教育和培训下一代研究人员进行团队科学。为了开发一个数字化、自治和分布式的基础设施,同时保护隐私,该团队将专注于数据存储和收集的架构,以及隐私推动者数据共享。数据收集基础设施和隐私支持技术将(i)仔细平衡数据实用性和隐私; (ii) 平衡已知隐私风险的脆弱性和保护敏感数据的机构需求; (iii) 允许个人(数据捐赠者)完全控制其数据并给予知情同意,同时以不同的方式与不同的数据收集者(研究人员)共享其数据。此外,该团队还将开发一套高度综合的研究项目,协调、智能地开展疫情预防工作,同时扩大参与和包容性。这些项目包括(i)使用可穿戴设备结合人口水平的社会、经济、文化和环境指标进行早期检测; (ii) 病原体传播的数学模型、基于时空分析的热点预测和缓解措施; (iii) 多层次、多方面的监督; (四)基于药物重新定位的新疾病的技术准备。这两个目标相辅相成,协同作用,以实现在个人和人口层面及早、准确地预测、预防和准备大流行病的最终目标,同时确保隐私和包容性。该奖项得到了跨部门预测机构的支持流行病预防情报第一阶段(PIPP)项目由生物科学理事会(BIO)、计算机信息科学与工程理事会(CISE)、工程学理事会(ENG)以及社会、行为和经济科学理事会(SBE)联合资助。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Intra-host mutation rate of acute SARS-CoV-2 infection during the initial pandemic wave
最初大流行浪潮期间急性 SARS-CoV-2 感染的宿主内突变率
- DOI:10.1007/s11262-023-02011-0
- 发表时间:2023-06
- 期刊:
- 影响因子:1.6
- 作者:El;Adhikari, Thamali M.;Tu, Zheng Jin;Cheng, Yu;Leng, Xiaoyi;Zhang, Xiangyi;Rhoads, Daniel;Ko, Jennifer S.;Worley, Sarah;Li, Jing;et al
- 通讯作者:et al
Interoperability in a Post- Roe Era: Sustaining Progress While Protecting Reproductive Health Information
后罗伊时代的互操作性:在保护生殖健康信息的同时保持进步
- DOI:10.1001/jama.2022.17204
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Walker, Daniel M.;Hoffman, Sharona;Adler
- 通讯作者:Adler
Privacy and Security — Protecting Patients’ Health Information
隐私和安全 — 保护患者 — 健康信息
- DOI:10.1056/nejmp2201676
- 发表时间:2022-11
- 期刊:
- 影响因子:158.5
- 作者:Hoffman; Sharona
- 通讯作者:Sharona
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jing Li其他文献
Enhancement characteristics of benign and malignant focal peripheral nodules in the peripheral zone of the prostate gland studied using contrast-enhanced transrectal ultrasound.
使用对比增强经直肠超声研究前列腺周围区良性和恶性局灶性周围结节的增强特征。
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:2.6
- 作者:
J. Tang;J.C. Yang;Y. Luo;Jing Li;Yan Li;H. Shi - 通讯作者:
H. Shi
A MIMO Channel Prediction Scheme Based on Multi-Task Learning
一种基于多任务学习的MIMO信道预测方案
- DOI:
10.1007/s11277-020-07658-8 - 发表时间:
2020-08-04 - 期刊:
- 影响因子:2.2
- 作者:
Jing Li;Dechun Sun;Zujun Liu - 通讯作者:
Zujun Liu
The PTEN / MMAC 1 Tumor Suppressor Induces Cell Death That Is Rescued by the AKT / Protein Kinase
PTEN / MMAC 1 肿瘤抑制因子诱导细胞死亡,并由 AKT / 蛋白激酶拯救
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
B. Oncogene;Jing Li;Laura Simpson;M. Takahashi;C. Miliaresis;M. Myers;N. Tonks;R. Parsons - 通讯作者:
R. Parsons
Effects of resveratrol glucoside on the recovery of motor function after focal cerebral ischemia-reperfusion injury in rats and its underlying mechanism
白藜芦醇苷对大鼠局灶性脑缺血再灌注损伤后运动功能恢复的影响及其机制
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Q. Sha;Yan;Faying Zhou;Yong Wang;W. Fang;Jing Li - 通讯作者:
Jing Li
Partial Decode-Forward Relaying for the Gaussian Two-Hop Relay Network
高斯两跳中继网络的部分解码转发中继
- DOI:
10.1109/tit.2016.2619902 - 发表时间:
2014-09-01 - 期刊:
- 影响因子:2.5
- 作者:
Jing Li;Young - 通讯作者:
Young
Jing Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jing Li', 18)}}的其他基金
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
- 批准号:
2340171 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Structured Population Dynamics Subject to Stoichiometric Constraints
合作研究:RUI:受化学计量约束的结构化人口动态
- 批准号:
2322104 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: Market Conduct in Technology Adoption in the Automobile Industry
NSF-BSF:合作研究:汽车行业技术采用的市场行为
- 批准号:
2049263 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
FET: CCF: Small: Computational Drug Prediction through Joint Learning
FET:CCF:小型:通过联合学习进行计算药物预测
- 批准号:
2006780 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Inverse Mapping of Spatial-Temporal Molecular Heterogeneity from Imaging Phenotype
从成像表型逆映射时空分子异质性
- 批准号:
2053170 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
RAPID:Genomic Variation Analysis of Coronavirus to Better Understand the Spread of COVID-19
RAPID:冠状病毒的基因组变异分析,以更好地了解 COVID-19 的传播
- 批准号:
2027667 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CAREER: Associative In-Memory Graph Processing Paradigm: Towards Tera-TEPS Graph Traversal In a Box
职业:关联内存图处理范式:在盒子中实现 Tera-TEPS 图遍历
- 批准号:
2040463 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CRII: CSR: Enabling Efficient Real-Time Systems upon Multiple Parallel Resources
CRII:CSR:在多个并行资源上实现高效的实时系统
- 批准号:
1948457 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Inverse Mapping of Spatial-Temporal Molecular Heterogeneity from Imaging Phenotype
从成像表型逆映射时空分子异质性
- 批准号:
1903135 - 财政年份:2019
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CAREER: Associative In-Memory Graph Processing Paradigm: Towards Tera-TEPS Graph Traversal In a Box
职业:关联内存图处理范式:在盒子中实现 Tera-TEPS 图遍历
- 批准号:
1748988 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
相似国自然基金
不同病程阶段的代谢综合征通过IGF-1/PI3K-Akt通路调控前列腺增生的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
悬索桥吊杆损伤的两阶段精细化诊断与性能综合评估方法
- 批准号:51508070
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
利用两阶段法全基因组关联研究探寻我国非综合征型先天外中耳畸形的易感基因及功能研究
- 批准号:81372085
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
中西医综合治疗气分阶段非典型性肺炎的机理探讨
- 批准号:30340017
- 批准年份:2003
- 资助金额:25.0 万元
- 项目类别:专项基金项目
可靠性阶段增长单元的系统综合
- 批准号:69774034
- 批准年份:1997
- 资助金额:11.0 万元
- 项目类别:面上项目
相似海外基金
Designing Rational Combinations to Improve CAR T Cell Therapy for Prostate Cancer
设计合理的组合以改善前列腺癌的 CAR T 细胞疗法
- 批准号:
10752046 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
SBIR Phase I: A web portal for artificial intelligence (AI)-based comprehensive discovery of repositioning drugs
SBIR 第一阶段:基于人工智能 (AI) 的重新定位药物综合发现门户网站
- 批准号:
2334510 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
1/2 Drug Development and Capacity Building: A UCR/CoH-CCC Partnership
1/2 药物开发和能力建设:UCR/CoH-CCC 合作伙伴关系
- 批准号:
10762157 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
A Multi-Institute Survivorship Study of Patients Living with Advanced Cancer Who Have Had Durable Response to Immune Checkpoint Inhibitors
对免疫检查点抑制剂有持久反应的晚期癌症患者的多机构生存研究
- 批准号:
10714336 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别: