CAREER: Towards Safety-Critical Real-Time Systems with Learning Components

职业:迈向具有学习组件的安全关键实时系统

基本信息

  • 批准号:
    2340171
  • 负责人:
  • 金额:
    $ 53.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-07-01 至 2029-06-30
  • 项目状态:
    未结题

项目摘要

In the rapidly advancing world of artificial intelligence (AI) and its widespread applications, today's safety-critical systems, ranging from self-driving cars to surgical robots, increasingly rely on learning-enabled modules. Ensuring the temporal safety of these AI-driven systems is crucial, especially in high-stakes and time-critical settings. Alongside improving functionality, accuracy, and efficiency, these systems must be safe in meeting real-time constraints despite worst-case scenarios and extreme events. However, safety-critical systems with learning components differ significantly from traditional ones, exhibiting greater dynamism and complexity in various aspects. Designing performant real-time scheduling strategies and conducting rigorous yet appropriately pessimistic analyses for proving temporal safety becomes much more challenging. This project aims to address this challenge by creating a framework that seamlessly integrates real-time safety verification and assurance into the performance optimization process of AI-driven safety-critical systems. It will contribute to the advancement of critical technologies of modern autonomous systems with learning capabilities that need to respond to highly dynamic internal and external environments. Moreover, the project places a strong emphasis on integrating research into educational and outreach activities to promote diversity in STEM education and broaden participation in computing and engineering.This project aims to provide real-time safety guarantees while optimizing the average performance and efficiency of safety-critical systems with learning components. To achieve this, the project will devise innovative real-time scheduling strategies specifically tailored to handle the intricate and dynamic computational workloads of these systems for achieving temporal safety with minimum performance loss. Theoretical analyses will be derived to bound the worst-case timing behavior while simultaneously maximizing average performance and efficiency. Additionally, it will pioneer safe reinforcement learning mechanisms designed to efficiently learn and optimize system performance while ascertaining temporal safety upon deployment. The project lays the foundation for addressing the grand challenge of providing temporal safety guarantees for AI-driven safety-critical systems while simultaneously maximizing their overall performance, including enhancing the capability of achieving mission-level goals, optimizing energy-saving, and improving system efficiency.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在快速发展的人工智能 (AI) 及其广泛应用领域,当今的安全关键系统(从自动驾驶汽车到手术机器人)越来越依赖于支持学习的模块。确保这些人工智能驱动系统的时间安全至关重要,尤其是在高风险和时间紧迫的环境中。除了提高功能、准确性和效率之外,这些系统还必须安全地满足实时约束,尽管存在最坏的情况和极端事件。然而,具有学习组件的安全关键系统与传统系统有很大不同,在各个方面表现出更大的活力和复杂性。设计高性能的实时调度策略并进行严格但适当的悲观分析以证明时间安全性变得更具挑战性。该项目旨在通过创建一个框架来应对这一挑战,该框架将实时安全验证和保证无缝集成到人工智能驱动的安全关键系统的性能优化过程中。它将有助于现代自主系统关键技术的进步,这些系统具有需要响应高度动态的内部和外部环境的学习能力。此外,该项目非常重视将研究融入教育和推广活动中,以促进STEM教育的多样性并扩大计算和工程领域的参与。该项目旨在提供实时安全保障,同时优化安全的平均性能和效率。具有学习组件的关键系统。为了实现这一目标,该项目将设计创新的实时调度策略,专门用于处理这些系统复杂且动态的计算工作负载,从而以最小的性能损失实现时间安全。将进行理论分析,以限制最坏情况下的时序行为,同时最大化平均性能和效率。此外,它将开创安全强化学习机制,旨在有效学习和优化系统性能,同时确定部署时的时间安全性。该项目为解决为人工智能驱动的安全关键系统提供临时安全保障同时最大化其整体性能的重大挑战奠定了基础,包括增强实现任务级目标的能力、优化节能和提高系统效率该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jing Li其他文献

Enhancement characteristics of benign and malignant focal peripheral nodules in the peripheral zone of the prostate gland studied using contrast-enhanced transrectal ultrasound.
使用对比增强经直肠超声研究前列腺周围区良性和恶性局灶性周围结节的增强特征。
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    J. Tang;J.C. Yang;Y. Luo;Jing Li;Yan Li;H. Shi
  • 通讯作者:
    H. Shi
A MIMO Channel Prediction Scheme Based on Multi-Task Learning
一种基于多任务学习的MIMO信道预测方案
  • DOI:
    10.1007/s11277-020-07658-8
  • 发表时间:
    2020-08-04
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Jing Li;Dechun Sun;Zujun Liu
  • 通讯作者:
    Zujun Liu
The PTEN / MMAC 1 Tumor Suppressor Induces Cell Death That Is Rescued by the AKT / Protein Kinase
PTEN / MMAC 1 肿瘤抑制因子诱导细胞死亡,并由 AKT / 蛋白激酶拯救
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Oncogene;Jing Li;Laura Simpson;M. Takahashi;C. Miliaresis;M. Myers;N. Tonks;R. Parsons
  • 通讯作者:
    R. Parsons
Effects of resveratrol glucoside on the recovery of motor function after focal cerebral ischemia-reperfusion injury in rats and its underlying mechanism
白藜芦醇苷对大鼠局灶性脑缺血再灌注损伤后运动功能恢复的影响及其机制
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Q. Sha;Yan;Faying Zhou;Yong Wang;W. Fang;Jing Li
  • 通讯作者:
    Jing Li
Partial Decode-Forward Relaying for the Gaussian Two-Hop Relay Network
高斯两跳中继网络的部分解码转发中继

Jing Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jing Li', 18)}}的其他基金

Collaborative Research: RUI: Structured Population Dynamics Subject to Stoichiometric Constraints
合作研究:RUI:受化学计量约束的结构化人口动态
  • 批准号:
    2322104
  • 财政年份:
    2023
  • 资助金额:
    $ 53.27万
  • 项目类别:
    Standard Grant
PIPP Phase I: Comprehensive, Integrated, Intelligent System for Early and Accurate Pandemic Prediction, Prevention, and Preparation at Personal and Population Levels
PIPP第一阶段:全面、集成、智能的系统,用于个人和人群层面的早期、准确的流行病预测、预防和准备
  • 批准号:
    2200255
  • 财政年份:
    2022
  • 资助金额:
    $ 53.27万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Market Conduct in Technology Adoption in the Automobile Industry
NSF-BSF:合作研究:汽车行业技术采用的市场行为
  • 批准号:
    2049263
  • 财政年份:
    2021
  • 资助金额:
    $ 53.27万
  • 项目类别:
    Standard Grant
FET: CCF: Small: Computational Drug Prediction through Joint Learning
FET:CCF:小型:通过联合学习进行计算药物预测
  • 批准号:
    2006780
  • 财政年份:
    2020
  • 资助金额:
    $ 53.27万
  • 项目类别:
    Standard Grant
Inverse Mapping of Spatial-Temporal Molecular Heterogeneity from Imaging Phenotype
从成像表型逆映射时空分子异质性
  • 批准号:
    2053170
  • 财政年份:
    2020
  • 资助金额:
    $ 53.27万
  • 项目类别:
    Continuing Grant
RAPID:Genomic Variation Analysis of Coronavirus to Better Understand the Spread of COVID-19
RAPID:冠状病毒的基因组变异分析,以更好地了解 COVID-19 的传播
  • 批准号:
    2027667
  • 财政年份:
    2020
  • 资助金额:
    $ 53.27万
  • 项目类别:
    Standard Grant
CAREER: Associative In-Memory Graph Processing Paradigm: Towards Tera-TEPS Graph Traversal In a Box
职业:关联内存图处理范式:在盒子中实现 Tera-TEPS 图遍历
  • 批准号:
    2040463
  • 财政年份:
    2020
  • 资助金额:
    $ 53.27万
  • 项目类别:
    Continuing Grant
CRII: CSR: Enabling Efficient Real-Time Systems upon Multiple Parallel Resources
CRII:CSR:在多个并行资源上实现高效的实时系统
  • 批准号:
    1948457
  • 财政年份:
    2020
  • 资助金额:
    $ 53.27万
  • 项目类别:
    Standard Grant
Inverse Mapping of Spatial-Temporal Molecular Heterogeneity from Imaging Phenotype
从成像表型逆映射时空分子异质性
  • 批准号:
    1903135
  • 财政年份:
    2019
  • 资助金额:
    $ 53.27万
  • 项目类别:
    Continuing Grant
CAREER: Associative In-Memory Graph Processing Paradigm: Towards Tera-TEPS Graph Traversal In a Box
职业:关联内存图处理范式:在盒子中实现 Tera-TEPS 图遍历
  • 批准号:
    1748988
  • 财政年份:
    2018
  • 资助金额:
    $ 53.27万
  • 项目类别:
    Continuing Grant

相似国自然基金

新型连续密钥泄漏保护机制研究
  • 批准号:
    61872292
  • 批准年份:
    2018
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目
基于极化码的可见光通信前向纠错及物理层安全编码研究
  • 批准号:
    61771222
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
江淮地区油稻向麦稻模式转变对土壤硝化反硝化过程影响机理研究
  • 批准号:
    31671639
  • 批准年份:
    2016
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目
满足强完美前向安全性的单轮身份基和无证书认证密钥协商协议研究
  • 批准号:
    61502436
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
水稻NIP水通道蛋白向籽粒运输砷的功能解析
  • 批准号:
    31372123
  • 批准年份:
    2013
  • 资助金额:
    86.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Towards Environment-Aware Adaptive Safety for Learning-Enabled Multiagent Systems with Application to Target Drone Capturing
职业:为支持学习的多智能体系统实现环境感知的自适应安全,并应用于目标无人机捕获
  • 批准号:
    2336189
  • 财政年份:
    2024
  • 资助金额:
    $ 53.27万
  • 项目类别:
    Continuing Grant
Towards improving recovery from dialysis-requiring acute kidney injury
改善需要透析的急性肾损伤的恢复
  • 批准号:
    10449585
  • 财政年份:
    2022
  • 资助金额:
    $ 53.27万
  • 项目类别:
Towards improving recovery from dialysis-requiring acute kidney injury
改善需要透析的急性肾损伤的恢复
  • 批准号:
    10600072
  • 财政年份:
    2022
  • 资助金额:
    $ 53.27万
  • 项目类别:
CAREER: Towards Non-Conservative Learning-Aided Robustness for Cyber-Physical Safety and Security
职业:实现网络物理安全的非保守学习辅助鲁棒性
  • 批准号:
    2313814
  • 财政年份:
    2022
  • 资助金额:
    $ 53.27万
  • 项目类别:
    Continuing Grant
Clinical Pharmacology Approaches towards Accelerating HIV Cure Initiatives
加速艾滋病毒治疗计划的临床药理学方法
  • 批准号:
    10258039
  • 财政年份:
    2021
  • 资助金额:
    $ 53.27万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了