The Roles of Mitochondrial Behavior and Morphology in Animal Performance

线粒体行为和形态学在动物性能中的作用

基本信息

  • 批准号:
    2223528
  • 负责人:
  • 金额:
    $ 95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Mitochondria are components of cells that produce energy in the form of the chemical ATP and perform numerous other core cellular processes. This project investigates how the shape and connectedness of mitochondria affect energy production at the cellular and whole-organism levels. ATP fuels nearly all physiological processes that occur in the body, shaping the energy utilization strategy and pace of life for each species. Mitochondria alter their shape (morphology) and move within the cell to interact with one another, a process referred to as mitochondrial behavior which appears to affect ATP production. The following hypotheses are being tested: 1) Changes in mitochondrial morphology and behavior increase ATP production, and 2) Mitochondrial behavior and morphology play key roles in the performance of animals, as indicated by how they respond to low food availability, reproduction, and aging. These ideas will be tested in two distantly related species, a copepod (a species of zooplankton found in tide pools) and the house mouse. In addition, research on mitochondria will be used as a platform for science education and the improvement of science literacy in Alabama. In collaboration with local biology teachers, an integrative and inspiring laboratory for high school students will be created. Teachers in East Alabama will be trained in the application of this laboratory. Once completed, the laboratory will be submitted to the Alabama State Board of Education for review. If approved, it will be available for use in every high school biology classroom in Alabama. The project also involves training and mentoring of graduate students, and a collaboration with a rural nature center to provide outdoors, hands-on experience with invertebrate biodiversity to more than 600 local participants.Organisms convert chemical energy into ATP to support essential processes including growth, self-maintenance, and reproduction. Mitochondria synthesize the majority of ATP that fuels energetically demanding processes in the body through oxidative phosphorylation. Mitochondria alter their shape, i.e., mitochondrial morphology, and move within the cell and interact with one another, a process termed mitochondrial behavior. Modifications to mitochondrial morphology and behavior affect the process of ATP synthesis. Biomedical research has shown that abnormal mitochondrial behavior and morphology can lead to disease. However, while mitochondrial behavior and morphology are altered under extreme conditions (e.g., parasitism, starvation), limited data exist that investigate how these key changes impact typical energetically demanding animal behaviors and life history strategies. The following overarching hypotheses are being tested in two distantly related species, the aquatic copepod Tigriopus californicus and the terrestrial house mouse Mus musculus: 1) Increased expression of inner mitochondrial membrane and inter-mitochondrial junctions improve the performance of the electron transport system, and 2) Mitochondrial behavior and morphology play key roles in the performance of animals, as indicated by how they respond to low food availability, reproduction, and aging. This project utilizes an integrative approach by linking cellular processes to whole-animal performance traits and by incorporating a wide array of research tools, including transmission electron microscopy, whole-organism and mitochondrial respiration assays, cell perforation, mitochondrial protein analysis, and direct manipulations of mitochondrial function and structure, including the alteration of electrochemical gradients within the electron transport system.This project is jointly funded by the BIO-IOS-Physiological Mechanisms and Biomechanics Program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
线粒体是以化学ATP形式产生能量并执行许多其他核心细胞过程的细胞组成部分。该项目研究了线粒体的形状和连接性如何影响细胞和全生物水平的能量产生。 ATP几乎燃烧体内发生的所有生理过程,从而塑造了每个物种的能量利用策略和生命的速度。线粒体改变其形状(形态),并在细胞内移动以相互作用,这一过程称为线粒体行为,似乎影响了ATP​​的产生。正在检验以下假设:1)线粒体形态和行为的变化增加了ATP的产生,以及2)线粒体行为和形态在动物的表现中起关键作用,这表明它们对低食物的可用性,生殖,生殖和衰老的反应方式表明。这些想法将在两个遥远相关的物种中进行测试,一个copepod(在潮汐池中发现的一种浮游动物)和鼠标。此外,关于线粒体的研究将被用作科学教育的平台和阿拉巴马州的科学素养的改善。将与当地生物学老师合作,​​为高中生提供一家综合和鼓舞人心的实验室。阿拉巴马州东部的教师将接受该实验室的应用培训。完成后,实验室将提交阿拉巴马州教育委员会进行审查。如果获得批准,它将可用于阿拉巴马州的每个高中生物学课堂。该项目还涉及对研究生的培训和指导,以及与农村自然中心的合作,以向户外,无脊椎动物生物多样性提供动手实践经验。线粒体合成了大多数ATP,通过氧化磷酸化,该ATP能量在体内供应。线粒体改变其形状,即线粒体形态,并在细胞内移动并彼此相互作用,这一过程称为线粒体行为。线粒体形态和行为的修改会影响ATP合成过程。生物医学研究表明,线粒体行为和形态异常会导致疾病。但是,尽管线粒体行为和形态在极端条件下(例如寄生虫,饥饿)发生了变化,但存在有限的数据,这些数据研究了这些关键的变化如何影响典型的能量要求对动物行为和生活历史策略的典型要求。在两个遥远相关的物种中,正在测试以下基本假设,即加利福尼亚州的水生copod copepod tigriopus and the trentertial House Muss us musculus:1)内部线粒体膜的表达增加,线粒体间膜和中环膜间的表达增加了电子传输系统的表现,并改善了电子传递系统的表现,以及2)降低了降低了偶然的表现,并指示他们的表现,并指出了如何逐渐发挥作用,它们的表现是如何逐渐发挥作用的作用。可用性,繁殖和衰老。 This project utilizes an integrative approach by linking cellular processes to whole-animal performance traits and by incorporating a wide array of research tools, including transmission electron microscopy, whole-organism and mitochondrial respiration assays, cell perforation, mitochondrial protein analysis, and direct manipulations of mitochondrial function and structure, including the alteration of electrochemical gradients within the electron transport system.This project is由Bio-OIS生理机制和生物力学计划以及启发竞争性研究的既定计划共同资助(EPSCOR)。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的审查标准通过评估来进行评估的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wendy Hood其他文献

Thomas H. Kunz
托马斯·昆兹
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Thomas H. Kunz;Christopher S Richardson;Wendy Hood;L. Allen;N. Hristov;Katherine M Ineson;Jonathan D Reichard;G. Mccracken;A. Kurta;D. Reynolds
  • 通讯作者:
    D. Reynolds

Wendy Hood的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wendy Hood', 18)}}的其他基金

Meeting: Inside the black box: the mitochondrial basis of life-history variation and animal performance: January 3-7, 2018: San Francisco, CA
会议:黑匣子内部:生活史变异和动物表现的线粒体基础:2018 年 1 月 3 日至 7 日:加利福尼亚州旧金山
  • 批准号:
    1738378
  • 财政年份:
    2017
  • 资助金额:
    $ 95万
  • 项目类别:
    Standard Grant
CAREER: Effects of mitohormesis on reproduction and longevity
职业:线粒体兴奋作用对生殖和寿命的影响
  • 批准号:
    1453784
  • 财政年份:
    2015
  • 资助金额:
    $ 95万
  • 项目类别:
    Continuing Grant
Meeting: Symposium Support for SICB 2014 stress and ornamentation
会议:SICB 2014 重音和装饰研讨会支持
  • 批准号:
    1359537
  • 财政年份:
    2013
  • 资助金额:
    $ 95万
  • 项目类别:
    Standard Grant

相似国自然基金

原位成像方法研究碳纳米材料的细胞界面行为与线粒体毒性机制
  • 批准号:
    22376095
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
神经元HK1缺失导致线粒体功能异常在调控小鼠抑郁样行为中的作用机制
  • 批准号:
    82301721
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Cofilin线粒体易位调控突触能量代谢在低剂量重金属联合暴露致神经行为损伤的机制研究
  • 批准号:
    82360653
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于外周血神经元来源外泌体的特发性快速眼动睡眠行为障碍患者线粒体DNA损伤相关的疾病进展预测指标研究
  • 批准号:
    82201409
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海马小胶质细胞-神经元线粒体递送在改善癫痫小鼠抑郁样行为的作用及机制研究
  • 批准号:
    82271501
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Transcriptional Dysfunction in Dentate Gyrus Cell Types: Roles of Retinoic Acid Responsive Genes in Protection Against Alzheimer's Disease Pathogenesis
齿状回细胞类型的转录功能障碍:视黄酸反应基因在预防阿尔茨海默病发病机制中的作用
  • 批准号:
    10367173
  • 财政年份:
    2022
  • 资助金额:
    $ 95万
  • 项目类别:
Transcriptional Dysfunction in Dentate Gyrus Cell Types: Roles of Retinoic Acid Responsive Genes in Protection Against Alzheimer's Disease Pathogenesis
齿状回细胞类型的转录功能障碍:视黄酸反应基因在预防阿尔茨海默病发病机制中的作用
  • 批准号:
    10543800
  • 财政年份:
    2022
  • 资助金额:
    $ 95万
  • 项目类别:
Defining the roles of Orai3 channel in cardiomyocytes and cardiomyopathy.
定义 Orai3 通道在心肌细胞和心肌病中的作用。
  • 批准号:
    10471846
  • 财政年份:
    2020
  • 资助金额:
    $ 95万
  • 项目类别:
Defining the roles of Orai3 channel in cardiomyocytes and cardiomyopathy.
定义 Orai3 通道在心肌细胞和心肌病中的作用。
  • 批准号:
    10031843
  • 财政年份:
    2020
  • 资助金额:
    $ 95万
  • 项目类别:
Defining the roles of Orai3 channel in cardiomyocytes and cardiomyopathy.
定义 Orai3 通道在心肌细胞和心肌病中的作用。
  • 批准号:
    10238106
  • 财政年份:
    2020
  • 资助金额:
    $ 95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了