MCA: Estimating quantitative genetic parameters via SNP based relatedness
MCA:通过基于 SNP 的相关性估计定量遗传参数
基本信息
- 批准号:2222929
- 负责人:
- 金额:$ 25.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Over the last twenty years our understanding of genetics has greatly increased due to the development of genomic tools and approaches. However, because behaviors are typically influenced by the combined effects of large numbers of genes, our understanding of much of behavior still requires classic approaches to estimating the genetic contributions to the behaviors we see animals express. Unfortunately, these classic approaches are largely restricted to work done with lab populations of animals or populations that have been extensively monitored for many generations and, frequently, many decades. Here we will evaluate the ability of alternative approaches to estimate genetic contributions by comparing methods built on modern genetic approaches to known values. We will also develop approaches to incorporate estimation error into analyses. Combined this will allow behavioral researchers to better understand the genetic influences on behavior and the evolutionary consequences of these influences.Understanding the evolutionary consequences, of behavioral variation and covariation—i.e. animal personality and behavioral syndromes—requires estimation of genetic variances and covariances in natural populations. Unfortunately, estimating these parameters is rarely feasible because relatedness among individuals is typically unknown in natural populations. Consequently, our quantitative genetic understanding of behavioral (co)variation is primarily based on laboratory studies or field studies conducted at different hierarchical levels (e.g. among-individual variation rather than additive genetic variation). An alternative to classic quantitative genetic analyses is to estimate the relevant parameters based on SNP based genomic relatedness values. This approach harnesses the power of sequencing advances to determine relatedness among individuals and then use these relatedness values in subsequent analyses. This allows questions about the genetic architecture connecting behaviors to be asked in natural populations. Unfortunately, this approach has rarely been used and its limitations are poorly understood. In this project we will assess the ability of SNP-based estimation of relatedness to properly estimate known heritabilities and genetic covariances. Simultaneously, we will develop methods to incorporate relatedness estimation error from SNPs into quantitative genetic analyses. Combined, this project will foster the development of necessary quantitative genetic tools and facilitate the bridging of genomic and quantitative genetic methodologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的二十年中,由于基因组工具和方法的发展,我们对遗传学的理解大大增加了。但是,由于行为通常受大量基因的综合作用的影响,因此我们对许多行为的理解仍然需要经典的方法来估计对我们看到动物表达的行为的遗传贡献。不幸的是,这些经典的方法在很大程度上仅限于与许多世代相传的动物或种群的实验室人群进行的工作,而且经常经常进行数十年的时间。在这里,我们将通过比较基于现代遗传方法与已知价值的方法来评估替代方法估计遗传贡献的能力。我们还将开发将估计误差纳入分析的方法。结合这将使行为研究人员能够更好地理解这些影响对行为的遗传影响和进化后果。理解行为变化和协方差的进化后果 - i.e。动物人格和行为综合征 - 自然种群中遗传方差和协方差的估计。不幸的是,估计这些参数很少是可行的,因为在自然种群中,个体之间的相关性通常是未知的。因此,我们对行为(CO)变异的定量遗传学理解主要基于在不同层次水平进行的实验室研究或现场研究(例如,个体变异而不是加性遗传变异)。经典定量遗传分析的一种替代方法是估计基于基于SNP的基因组相关性值的相关参数。这种方法利用了测序进步的力量,以确定个体之间的相关性,然后在随后的分析中使用这些相关性值。这允许在自然种群中提出有关遗传结构连接行为的问题。不幸的是,这种方法很少使用,其局限性也很少理解。在这个项目中,我们将评估基于SNP的相关性估计与正确估计的已知遗传和遗传协方差的能力。同时,我们将开发将SNP相关性估计误差纳入定量遗传分析的方法。该项目结合在一起,将促进必要的定量遗传工具的开发,并促进基因组和定量遗传方法的桥接。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛的影响来通过评估来获得支持的审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ned Dochtermann其他文献
Ned Dochtermann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ned Dochtermann', 18)}}的其他基金
Collaborative Research: Behavioral Syndromes as Evolutionary Constraints: the Role of Genetic Architecture
合作研究:作为进化约束的行为综合症:遗传结构的作用
- 批准号:
1557951 - 财政年份:2016
- 资助金额:
$ 25.02万 - 项目类别:
Continuing Grant
相似国自然基金
同化分析场误差的客观定量估计及其对改进集合预报初始扰动的作用
- 批准号:42375058
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
几何、流体力学中的偏微分方程解的定量性质
- 批准号:12226418
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
高分辨率多源降水融合产品的开发及其在洪水模拟中的应用
- 批准号:41905101
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
非线性椭圆型方程在均匀化理论中的定量估计
- 批准号:11901262
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
天气雷达精准降水估计机器学习理论与算法研究
- 批准号:61906190
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of environmental DNA technology for estimating the distribution of marine fishes and monitoring its seasonal changes
开发用于估计海洋鱼类分布并监测其季节变化的环境DNA技术
- 批准号:
21K14899 - 财政年份:2021
- 资助金额:
$ 25.02万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Estimating of unstationary IDFA curve by using d4PDF dataset
使用 d4PDF 数据集估计非平稳 IDFA 曲线
- 批准号:
19K04613 - 财政年份:2019
- 资助金额:
$ 25.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Proposal of an equation for estimating the static modulus of elasticity of porous concrete with wide range of voids for performance-based design
针对基于性能的设计,提出了估算大范围孔隙多孔混凝土静态弹性模量的方程
- 批准号:
19K04694 - 财政年份:2019
- 资助金额:
$ 25.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An attempt to establish a method for estimating the magma intrusion volume and the timing of eruption from volcano tectonic earthquakes
建立火山构造地震岩浆侵入量及喷发时间估算方法的尝试
- 批准号:
18K03781 - 财政年份:2018
- 资助金额:
$ 25.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a methodology for estimating nursing workload
开发估计护理工作量的方法
- 批准号:
18K10189 - 财政年份:2018
- 资助金额:
$ 25.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)