Collaborative Research: FW-HTF-R: The Future of Robot-Assisted Nursing: Interactive AI Frameworks for Upskilling Nurses and Customizing Robot Assistance

合作研究:FW-HTF-R:机器人辅助护理的未来:用于提高护士技能和定制机器人辅助的交互式人工智能框架

基本信息

  • 批准号:
    2222417
  • 负责人:
  • 金额:
    $ 2.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The specific objectives of the Future of Work at the Human-Technology Frontier program are (1) to facilitate convergent research that employs the joint perspectives, methods, and knowledge of computer science, engineering, learning sciences, research on education and workforce training, and social, behavioral, and economic sciences; (2) to encourage the development of a research community dedicated to designing intelligent technologies and work organization and modes inspired by their positive impact on individual workers, the work at hand, the way people learn and adapt to technological change, creative and supportive workplaces (including remote locations, homes, classrooms, or virtual spaces), and benefits for social, economic, and environmental systems at different scales; (3) to promote deeper basic understanding of the interdependent human-technology partnership to advance societal needs by advancing design of intelligent work technologies that operate in harmony with human workers, including consideration of how adults learn the new skills needed to interact with these technologies in the workplace, and by enabling broad workforce participation, including improving accessibility for those challenged by physical or cognitive impairment; and (4) to understand, anticipate, and explore ways of mitigating potential risks arising from future work at the human-technology frontier.Nursing is a discipline of knowledge and practice focused on delivering patient-centered care. As the healthcare providers who are with hospitalized patients 24 hours a day, 7 days a week, registered nurses are crucial for ensuring patient safety and delivering patient-centered care. Alarmingly, however, the U.S. is experiencing a dire nursing shortage, which is projected to significantly worsen in the next decade. As a result, nurses have limited time for patient-centered care. To continue providing high-quality patient care, healthcare leaders are scrambling for solutions, often turning to technological aids such as artificial intelligence (AI) and robots. On one hand, AI-enabled robotic assistants hold the potential to support nurses in some routine tasks, allowing them to spend more time on patient care and improving patient outcomes. On the other hand, the introduction of robots also brings forth several areas of concerns such as increase in nursing workload due to required training and maintenance to use these complex systems. This planning project will develop a multi-disciplinary research agenda to systematically introduce nurses to AI-enabled robotics technology, with the goal of ensuring that the integration of robots in the future of nursing brings long-term positive impact.Seamless integration of robotic assistants in the nursing workflow requires (a) careful scientific study of the impact of robots on nursing workload, (b) design of nurse-centered frameworks for customizing robotic assistance, and (c) continued development of nurse training content and practices. To develop a research agenda that expands on these thrusts, the project will involve three main planning activities. First, the project will bring together technologists, healthcare professionals, social scientists, and educators through workshops and stakeholder meetings. These meetings will facilitate cross-disciplinary collaborations and formation of a convergent research team. Second, through participatory design, the project team will create a testbed for robot-assisted nursing, where multiple disciplines can brainstorm, prototype, and evaluate solutions for robot-assisted nursing. Third, the project team will use the testbed for generating preliminary data to assess the impact of robotic assistants on nursing workload. The data collection will be conducted with the help of nurse volunteers of varied experience, and in a combination of simulated and physical environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类技术前沿计划的未来工作的具体目标是(1)促进融合研究,采用计算机科学、工程、学习科学、教育和劳动力培训研究的联合观点、方法和知识,以及社会、行为和经济科学; (2) 鼓励发展一个致力于设计智能技术、工作组织和模式的研究团体,其灵感来自于它们对个体工人、手头的工作、人们学习和适应技术变革的方式、创造性和支持性工作场所的积极影响(包括偏远地点、家庭、教室或虚拟空间)以及不同规模的社会、经济和环境系统的效益; (3) 促进对相互依存的人类与技术伙伴关系的更深入的基本理解,通过推进与人类工人和谐相处的智能工作技术的设计来满足社会需求,包括考虑成年人如何学习与这些技术互动所需的新技能工作场所,并促进广泛的劳动力参与,包括改善那些有身体或认知障碍的人的无障碍环境; (4) 理解、预测和探索减轻人类技术前沿未来工作中潜在风险的方法。护理是一门知识和实践学科,专注于提供以患者为中心的护理。作为每周 7 天、每天 24 小时照顾住院患者的医疗保健提供者,注册护士对于确保患者安全和提供以患者为中心的护理至关重要。然而,令人担忧的是,美国正在经历严重的护理短缺,预计未来十年这种情况将显着恶化。因此,护士进行以患者为中心的护理的时间有限。为了继续提供高质量的患者护理,医疗保健领导者正在争先恐后地寻找解决方案,通常求助于人工智能 (AI) 和机器人等技术辅助。一方面,人工智能机器人助理有潜力支持护士完成一些日常任务,使他们能够将更多时间花在患者护理和改善患者治疗效果上。另一方面,机器人的引入也带来了几个方面的担忧,例如由于使用这些复杂系统需要培训和维护而导致护理工作量增加。该规划项目将制定一个多学科研究议程,系统地向护士介绍人工智能机器人技术,目标是确保机器人在未来护理中的集成带来长期的积极影响。机器人助手在护理领域的无缝集成护理工作流程需要(a)仔细科学研究机器人对护理工作量的影响,(b)设计以护士为中心的定制机器人协助框架,以及(c)持续开发护士培训内容和实践。为了制定扩展这些主旨的研究议程,该项目将涉及三项主要规划活动。首先,该项目将通过研讨会和利益相关者会议将技术专家、医疗保健专业人员、社会科学家和教育工作者聚集在一起。这些会议将促进跨学科合作和融合研究团队的形成。其次,通过参与式设计,项目团队将创建一个机器人辅助护理的试验台,多个学科可以在这里集思广益、原型设计和评估机器人辅助护理的解决方案。第三,项目团队将使用测试平台生成初步数据,以评估机器人助手对护理工作量的影响。数据收集将在具有不同经验的护士志愿者的帮助下,在模拟和物理环境相结合的情况下进行。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查进行评估,被认为值得支持标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shannan Hamlin其他文献

Shannan Hamlin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shannan Hamlin', 18)}}的其他基金

Collaborative Research [FW-HTF-RM]: The Future of Nurse Training: Robotic Teaching Assistant Systems for Nursing Instructors
协作研究 [FW-HTF-RM]:护士培训的未来:护理讲师的机器人助教系统
  • 批准号:
    2326391
  • 财政年份:
    2023
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Standard Grant

相似国自然基金

耐蚀性与氢陷阱协同调控的高强度紧固件用钢延迟断裂行为研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
高强紧固件缝隙腐蚀多因素临界条件研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于DES/FW-H方法的共轴刚性旋翼气动噪声预测方法及机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
航天紧固件强韧与润滑一体化复合碳基薄膜界面调控及防松机理研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
基于模糊测试的物联网设备固件漏洞检测技术研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    292 万元
  • 项目类别:
    重点项目

相似海外基金

Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
  • 批准号:
    2326170
  • 财政年份:
    2023
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
  • 批准号:
    2326160
  • 财政年份:
    2023
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
  • 批准号:
    2326193
  • 财政年份:
    2023
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Artificial Intelligence Technology for Future Music Performers
合作研究:FW-HTF-RM:未来音乐表演者的人工智能技术
  • 批准号:
    2326198
  • 财政年份:
    2023
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
  • 批准号:
    2326407
  • 财政年份:
    2023
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了