Collaborative Research [FW-HTF-RM]: The Future of Nurse Training: Robotic Teaching Assistant Systems for Nursing Instructors

协作研究 [FW-HTF-RM]:护士培训的未来:护理讲师的机器人助教系统

基本信息

  • 批准号:
    2326391
  • 负责人:
  • 金额:
    $ 17.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-11-01 至 2027-10-31
  • 项目状态:
    未结题

项目摘要

As the largest hospital workforce, registered nurses are essential to the overall stability of hospitals and play a vital role in delivering quality patient care. Nursing instructors are responsible for training and assessments of this workforce. The U.S. is experiencing a dire shortage of nurses, leading to significant turnover of nursing staff and an ever-growing need to train more nurses. As a result, the supply for nursing instructors too has outstripped demand. Meeting the nurse workforce training needs is a significant challenge and motivates development of transformative mechanisms for human-technology partnership in nurse workforce training. To address this challenge, the project's overall goal is to help nurse instructors improve training outcomes while freeing up their time for personalized instruction and enhance efficiency of nursing workforce training programs. To achieve this goal the project will design, develop, and evaluate the impacts of Robotic Intelligent Teaching Assistant Systems (RITAS) on the future of nurse workforce training. Through a symbiosis of virtual and embodied intelligence components, the teaching assistance system will assist nursing instructors in training of routine nursing procedures by assessing trainees' skills, reporting the assessment summaries to instructors, and delivering instructor-guided tutoring to trainees. Through mechanisms for participatory design, nursing instructors and nurses of varying backgrounds will be involved in the technology design from the very beginning, shaping the use of such tools and informing future efforts on the use of artificial intelligence and robotics in nursing curriculum and more broadly healthcare. The core team brings together expertise in nursing, nursing education, behavioral science, robotics, artificial intelligence, intelligent tutoring, and human-centered computing to achieve the overarching goals. Project advisors will contribute technology, nursing, organizational behavior and management, and learning sciences expertise. The project includes three concurrent and integrated tracks to realize novel mechanisms for human-technology partnership in nurse workforce training. The first two tracks focus on design and development of the virtual and embodied components of the future technology, respectively, through algorithmic innovations in intelligent tutoring and robotics. Through these innovations, the project will bring a transformative leap in intelligent tutoring robots: instead of relying solely on conversational interaction, RITAS will utilize its sensors and embodiment to verify and improve trainees' physical skill execution. Together, the two components will assist with assessment and training of nursing procedures. Assessment summaries and tutoring will be delivered using both verbal and non-verbal mechanisms for human-robot communication. The third track will measure training, productivity, and behavioral metrics that are relevant to deployment and adoption of the future technology, such as the impact of robotic teaching assistance on nursing instructors' workload and nurse trainees' learning outcomes. These measurements will be derived through extensive human subject experiments conducted within ongoing nurse workforce training activities at a large hospital, which onboards over thousand nurses per year, and distilled into a concise nursing theory guiding technology adoption in nursing education. The project will also develop spatially-grounded models of nursing procedures and training environments. Through these worker-centered assessments, theories, and models, the project will inform the work design of future nursing instructors at the human-technology frontier.This project is supported by the Future of Work at the Human-Technology Frontier program which supports multi-disciplinary research to sustain economic competitiveness, promote worker well-being, lifelong and pervasive learning, and quality of life, and illuminate the emerging social and economic context and drivers of innovations that are shaping the future of jobs and work.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
作为医院规模最大的员工队伍,注册护士对于医院的整体稳定至关重要,并在提供优质的患者护理方面发挥着至关重要的作用。护理讲师负责对这支队伍进行培训和评估。美国护士严重短缺,导致护理人员流动率大幅上升,培训更多护士的需求日益增长。结果,护理讲师的供应也超过了需求。满足护士队伍培训需求是一项重大挑战,并促进护士队伍培训中人力技术伙伴关系变革机制的发展。为了应对这一挑战,该项目的总体目标是帮助护士讲师改善培训成果,同时腾出时间进行个性化指导并提高护理人员培训计划的效率。为了实现这一目标,该项目将设计、开发和评估机器人智能教学辅助系统(RITAS)对未来护士队伍培训的影响。通过虚拟和实体智能组件的共生,教学辅助系统将通过评估学员的技能、向导师报告评估摘要以及为学员提供导师指导的辅导,协助护理导师进行常规护理程序的培训。通过参与式设计机制,不同背景的护理讲师和护士将从一开始就参与技术设计,塑造此类工具的使用,并为未来在护理课程和更广泛的医疗保健中使用人工智能和机器人技术提供信息。核心团队汇集了护理、护理教育、行为科学、机器人、人工智能、智能辅导和以人为本的计算方面的专业知识,以实现总体目标。项目顾问将贡献技术、护理、组织行为和管理以及学习科学方面的专业知识。该项目包括三个并行和综合的轨道,以实现护士队伍培训中人机合作的新机制。前两个轨道分别侧重于通过智能辅导和机器人技术的算法创新来设计和开发未来技术的虚拟和实体组件。通过这些创新,该项目将为智能辅导机器人带来革命性的飞跃:RITAS将不再仅仅依靠对话交互,而是利用其传感器和体现来验证和提高学员的身体技能执行力。这两个组成部分将共同协助护理程序的评估和培训。评估总结和辅导将使用人机交流的语言和非语言机制来提供。第三个轨道将衡量与未来技术的部署和采用相关的培训、生产力和行为指标,例如机器人教学辅助对护理讲师的工作量和护士实习生的学习成果的影响。这些测量结果将通过在一家大型医院正在进行的护士队伍培训活动中进行的广泛的人体实验得出,该医院每年有超过千名护士,并提炼成一个简洁的护理理论,指导护理教育中技术的采用。该项目还将开发基于空间的护理程序和培训环境模型。通过这些以工人为中心的评估、理论和模型,该项目将为人类技术前沿的未来护理讲师的工作设计提供信息。该项目得到了人类技术前沿计划的未来工作的支持,该计划支持多种学科研究,以维持经济竞争力,促进工人福祉、终身和普遍学习以及生活质量,并阐明正在塑造就业和工作未来的新兴社会和经济背景以及创新驱动因素。该奖项反映了 NSF 的法定使命和通过使用基金会的智力价值和更广泛的影响审查标准进行评估,该项目被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shannan Hamlin其他文献

Shannan Hamlin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shannan Hamlin', 18)}}的其他基金

Collaborative Research: FW-HTF-R: The Future of Robot-Assisted Nursing: Interactive AI Frameworks for Upskilling Nurses and Customizing Robot Assistance
合作研究:FW-HTF-R:机器人辅助护理的未来:用于提高护士技能和定制机器人辅助的交互式人工智能框架
  • 批准号:
    2222417
  • 财政年份:
    2022
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Standard Grant

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
  • 批准号:
    2326170
  • 财政年份:
    2023
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
  • 批准号:
    2326160
  • 财政年份:
    2023
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
  • 批准号:
    2326193
  • 财政年份:
    2023
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Artificial Intelligence Technology for Future Music Performers
合作研究:FW-HTF-RM:未来音乐表演者的人工智能技术
  • 批准号:
    2326198
  • 财政年份:
    2023
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
  • 批准号:
    2326407
  • 财政年份:
    2023
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了