Hydrous Components in Nominally Anhydrous Phases

标称无水相中的含水组分

基本信息

  • 批准号:
    2149559
  • 负责人:
  • 金额:
    $ 39.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Hydrogen exists as a minor component in numerous crystalline substances as molecular water and hydroxide ions, the so-called hydrous components. Minerals with these components include those that make up the Earth and synthetic industrial analogues that are of technological importance. The hydrogen in Earth’s minerals account for the vast majority of our planet’s hydrogen and has a profound effect on the behavior of Earth’s interior. Similarly, hydrous components can significantly modify the material properties of synthetic materials, such as semiconductors. Despite the clear importance of hydrogen in these contexts, there remain two fundamental uncertainties: 1) where does the hydrogen incorporate into crystal structures and 2) at what concentrations hydrogen is present. This work will address both issues through a comprehensive approach of both laboratory experiments and computer simulations. This will include development of analytical techniques for hydrogen detection, detailed spectroscopic studies, and interpretation of experimental data from quantum mechanics calculations. In addition to continuing work on previously studied silicate minerals (the most abundant minerals in the earth), the research will also focus on binary oxide minerals. Binary oxides are not only geologically relevant, but also have extreme relevance in many established and emerging technologies, ranging from solar cells, to lasers, touch screens, pigments, semiconductors, and flat screen displays. Hydrogen impurities have been shown to play a key role in these settings. Thus, this research will not only be important for understanding the inner workings of our planet, but will also be significant for the development of new technologies.It has long been understood that hydrous components (OH- and H2O) in nominally anhydrous minerals (NAMs) are of great importance in earth science. These phases, which include abundant mantle phases such as olivine, garnet, pyroxene and ringwoodite, are likely the largest reservoir for hydrogen in the Earth. The trace hydrogen in NAMs often has outsized effects on a wide range of their material properties, from melting points, to mechanical deformation, thermal and electrical conductivity, color, radiation stability. Despite the clear significance of hydrogen in NAMs, there persist two fundamental issues. First is the quantification of hydrogen concentrations in these phases. Numerous techniques have been attempted or utilized over the last few decades including nuclear profile analysis and SIMS measurements, but the technical challenges related to measuring trace hydrogen concentrations in NAMs have proven difficult to overcome. Second is the identification of specific hydrogen sites in NAMs. Although some defect sites have been identified in specific NAMs such as garnets, there is little recourse for establishing the detailed defect structures in most phases. Our proposed solution to these issues is a holistic approach that considers both established and emergent techniques for measuring trace hydrogen in minerals, and quantum mechanics (density functional theory) calculations. These research components will be linked through infrared spectroscopy of oriented crystals, a technique that has proven fundamental in the study of NAMs. Our work will initially focus on simple oxide minerals such as rutile and stishovite, a group of phases that has typically been underrepresented in research into NAMs, but whose study could greatly benefit the field as a whole, with additional benefits to the development of technological materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
氢以分子水和氢氧根离子的形式存在于许多晶体物质中,所谓的含水成分包括构成地球的矿物和具有技术重要性的合成工业类似物。氢占地球的绝大多数,并且对地球内部的行为具有深远的影响,尽管氢在这些材料中具有明显的重要性,但含水成分可以显着改变合成材料的材料特性。在这种情况下,仍然存在两个基本的不确定性:1)氢在哪里融入晶体结构;2)氢的存在浓度如何。这项工作将通过实验室实验和计算机模拟的综合方法来解决这两个问题。除了继续研究先前研究的硅酸盐矿物(地球上最丰富的矿物)之外,该研究还将重点关注二元氧化物矿物。二进制氧化物不仅与地质相关,而且在许多成熟和新兴技术中也具有极大的相关性,从太阳能电池到激光、触摸屏、颜料、半导体和平板显示器,氢杂质已被证明在其中发挥着关键作用。因此,这项研究不仅对于了解地球的内部运作很重要,而且对于新技术的开发也具有重要意义。长期以来,人们一直认为含水成分(OH-和H2O)名义上是无水的。矿物(NAM)在地球科学中具有重要意义。这些相包括丰富的地幔相,例如橄榄石、石榴石、辉石和尖木岩,很可能是地球上最大的氢储库。NAM 中的微量氢通常会产生巨大的影响。尽管氢在 NAM 中具有明显的重要性,但仍然存在两个基本问题。在过去的几十年里,人们尝试或使用了许多技术,包括核剖面分析和 SIMS 测量,但与测量 NAM 中痕量氢浓度相关的技术挑战已被证明难以克服。尽管在特定的 NAM(例如石榴石)中已经确定了一些缺陷位点,但在大多数阶段,我们对这些问题提出的解决方案是一种考虑已建立的和考虑到的整体方法。涌现的测量矿物中痕量氢的技术和量子力学(密度泛函理论)计算将通过定向晶体的红外光谱联系起来,这已被证明是 NAM 研究的基础。氧化物矿物,如金红石和辉石,这是一组在 NAM 的研究中通常代表性不足的相,但其研究可以极大地有益于整个领域,并为技术的发展带来额外的好处该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Rossman其他文献

George Rossman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George Rossman', 18)}}的其他基金

An Experimental and Computational Study of the Radiative Thermal Conductivity of Upper Mantle Minerals and Rocks
上地幔矿物和岩石辐射热导率的实验和计算研究
  • 批准号:
    2148727
  • 财政年份:
    2022
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Continuing Grant
Light Element Incorporation in Nominally Anhydrous Minerals
名义无水矿物中的轻元素掺入
  • 批准号:
    1322082
  • 财政年份:
    2014
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Continuing Grant
Effects of Hydrogen on Kinetic Processes in Nominally Anhydrous Minerals
氢对标称无水矿物动力学过程的影响
  • 批准号:
    0947956
  • 财政年份:
    2010
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Continuing Grant
Acquisition of an Electron Microprobe for Geological and Materials Research at Caltech
加州理工学院购买用于地质和材料研究的电子显微探针
  • 批准号:
    0318518
  • 财政年份:
    2004
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Standard Grant
Hydrous Components in the Nominally Anhydrous Minerals
名义无水矿物中的含水成分
  • 批准号:
    0337816
  • 财政年份:
    2004
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Continuing Grant
Hydrous Components in Nominally Anhydrous Crustal Minerals
名义无水地壳矿物中的含水成分
  • 批准号:
    0125767
  • 财政年份:
    2001
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Standard Grant
Hydrous Components in Nominally Anhydrous Minerals
名义无水矿物中的含水成分
  • 批准号:
    9804871
  • 财政年份:
    1998
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Standard Grant
Upgrading of Infrared Spectroscopic Instrumentation at the Mineral Spectroscopy Lab at the California Institute of Technology
加州理工学院矿物光谱实验室红外光谱仪器升级
  • 批准号:
    9725897
  • 财政年份:
    1998
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Standard Grant
Computer Control and Data Processing Instrumentation for an Electron Microprobe, SEM and XRD Laboratory
用于电子显微探针、SEM 和 XRD 实验室的计算机控制和数据处理仪器
  • 批准号:
    9405438
  • 财政年份:
    1994
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Standard Grant
"Water" in Normally Anhydrous Minerals
通常无水矿物中的“水”
  • 批准号:
    9218980
  • 财政年份:
    1993
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Continuing Grant

相似国自然基金

转运蛋白SmABCG1介导丹参酮类成分细胞外排的分子机制研究
  • 批准号:
    82304662
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
北豆根活性成分蝙蝠葛碱靶向TOMM34增强机体抗肿瘤免疫抑制结直肠癌转移的作用机制研究
  • 批准号:
    82304790
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
中药补骨脂成分次苷酸查尔酮靶向TAOK1改善肿瘤恶病质肌萎缩的作用研究
  • 批准号:
    82374085
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
嗜尸性蝇类演替模式与VOCs成分偏好的相关性及其嗅觉机制研究
  • 批准号:
    32370554
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
大豆GmNF-YC9通过调控关键酶SQLE基因介导甾类化合物的合成分子机制解析
  • 批准号:
    32372131
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

タンパク質構成全キラルアミノ酸の三次元HPLC分析法開発と網羅的疾患マーカー探索
构建蛋白质全手性氨基酸三维HPLC分析方法并全面寻找疾病标志物
  • 批准号:
    24KJ1800
  • 财政年份:
    2024
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
イオンチャネル形成天然物を利用したリソソーム機能調節分子の創出
使用形成离子通道的天然产物创建调节溶酶体功能的分子
  • 批准号:
    24KJ0784
  • 财政年份:
    2024
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
マクロファージによる上皮分化誘導機構と肺線維化形成機序の解明
阐明巨噬细胞上皮分化诱导机制和肺纤维化形成机制
  • 批准号:
    24K11339
  • 财政年份:
    2024
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
腺毛だらけのヨモギ虫こぶの発生機構の解明と機能性成分の量産に向けた技術開発
充满腺毛的艾瘿生成机制的阐明及功能性成分的量产技术开发
  • 批准号:
    24K09505
  • 财政年份:
    2024
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
肉腫様成分を伴うがんの臓器横断的な概念確立に向けた病理学的検討
病理学研究旨在建立具有肉瘤成分的癌症的跨器官概念
  • 批准号:
    24K10117
  • 财政年份:
    2024
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了