Collaborative Research: PPoSS: Planning: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:规划:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
基本信息
- 批准号:2217086
- 负责人:
- 金额:$ 6.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High-dimensional data computation or analytics are gaining importance in many domains, such as quantum chemistry/physics, quantum circuit simulation, brain processing, social networks, healthcare and machine/deep learning, to name a few. Tensors, a representation of high-dimensional data, are playing an increasingly critical role, and so are tensor methods. Tensor decompositions or factorizations of low-dimensional data (three to five dimensions) have been extensively studied over the past years from a high-performance computing and also compiler and computer architecture angles for their computational core operations, while tensor networks targeting very high-dimensional data (over ten dimensions) and extracting physically meaningful latent variables are underdeveloped because of their complicated mathematical nature, extremely high computational complexity, and more domain-dependent challenges. The project’s novelties are manifold: 1) memory heterogeneity-aware representations with algorithm and system optimizations, which could be adopted to solve other problems such as irregular applications and sparse numerical methods; 2) hardware-software co-design of specialized, sparse-tensor network-accelerator architectures, that are among the first hardware implementations of sparse-tensor networks. The project’s impacts are 1) advancing state-of-the-art tensor decomposition studies to model true higher-order and sparse data; 2) triggering a closer long-term collaboration ranging from academia to research labs to industry by studying solicitous applications; 3) bringing appropriate educational opportunities.This project proposes Cross-layer cooRdination and Optimization for Scalable and Sparse-Tensor Networks (CROSS) for heterogeneous systems that are equipped with various types of accelerators, such as GPUs, TPUs and FPGAs, as well as heterogeneous memories with dynamic and non-volatile random-access memories (DRAM+NVRAM). This research aims to study the sparsity in widely used tensor networks by introducing constraints, regularization, dictionaries, and/or domain knowledge for better data compression, faster computation, lower memory usage and better interpretability. Besides the sparsity challenges, sparse-tensor networks also suffer from the curse of dimensionality, aggravated data randomness and irregular program and memory access behaviors. This planning project conducts preliminary research that aims to address these challenges from four perspectives: (1) memory heterogeneity-aware representations and data (re-)arrangement, (2) balanced sparse tensor contraction (SpTC) algorithms with smart page arrangement, (3) memoization and intelligent allocation to reduce computational cost, and (4) specialized accelerator architectures for sparse-tensor networks. The optimized sparse tensor networks will encompass efforts from high-performance computing, algorithms, compilers, computer architecture and performance modeling and will be tested under multiple application scenarios.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高维数据计算或分析在许多领域中变得重要,例如量子化学/物理,量子电路模拟,大脑处理,社交网络,医疗保健和机器/深度学习,仅举几例。张量是高维数据的表示,起着越来越关键的作用,张量方法也是如此。在过去的几年中,从高性能计算,编译器和计算机架构角度来计算核心核心操作,在过去几年中,张量分解或因素化(三到五个维度)已被广泛研究,同时张张量的网络针对了非常高的量化(超过十分尺寸),因为它们具有较高的物理含量的量化,因为它们具有较高的量化量,因为它们的数量较高,因为它们具有较高的量化量,因为它们的数量较高,因为它们的数量较高,因为它们的数量较高,因为它们的量化量很高,因为它们的数量较高的量计算复杂性和更依赖域的挑战。该项目的新颖性是多种多样的:1)具有算法和系统优化的内存异质性表述,可以采用其他问题,例如不规则应用和稀疏数值方法; 2)硬件 - 软件软件共同设计的专用,稀疏网络加速器架构,这是稀疏张量网络的第一个硬件实现之一。该项目的影响是1)进步最新的张量分解研究,以模拟真正的高阶和稀疏数据; 2)通过研究坚固的应用来触发从学术界到研究实验室再到行业的更紧密的长期合作; 3)带来适当的教育机会。该项目提案跨层协调和优化,可扩展和稀疏量张量网络(交叉),用于异质系统,这些系统与各种类型的加速器,例如GPU,TPU和FPGA等各种类型的加速器,以及动态和非挥发性的随机记忆,以及+挥发性随机的记忆(这项研究旨在通过引入约束,调节,字典和/或域知识来研究广泛使用的张量网络中的稀疏性,以获得更好的数据压缩,更快的计算,较低的内存使用和更好的可解释性。除了稀疏挑战外,稀疏张量网络还遭受了维度,汇总数据随机性以及不规则程序和内存访问行为的诅咒。 This planning project conducts preliminary research that aims to address these challenges from four perspectives: (1) memory heterogeneity-aware representations and data (re-)arrangement, (2) balanced sparse tensor contract (SpTC) algorithms with smart page arrangement, (3) memoization and intelligent allocation to reduce computational cost, and (4) specialized accelerator architectures for sparse-tensor networks.优化的稀疏张量网络将涵盖高性能计算,算法,编译器,计算机架构和性能建模的工作,并将在多个应用程序场景下进行测试。该奖项反映了NSF的法定任务,并通过使用该基金会的智力功能和广泛的影响来评估NSF的法定任务。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Merchandiser: Data Placement on Heterogeneous Memory for Task-Parallel HPC Applications with Load-Balance Awareness
- DOI:10.1145/3572848.3577497
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:Zhen Xie;Jie Liu-;Jiajia Li;Dong Li
- 通讯作者:Zhen Xie;Jie Liu-;Jiajia Li;Dong Li
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dong Li其他文献
Hybrid Operand Communication for Dataflow Processors
数据流处理器的混合操作数通信
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Dong Li;Behnam Robatmili;Sibi Govindan;D. Burger;S. Keckler - 通讯作者:
S. Keckler
Complete genome sequence of Methanosphaera sp. ISO3-F5, a rumen methylotrophic methanogen
甲烷球菌属 (Methanosphaera sp.) 的完整基因组序列。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0.8
- 作者:
Nikola Palevich;J. Jeyanathan;K. Reilly;Faith P Palevich;Paul H Maclean;Dong Li;E. Altermann;W. Kelly;Sinead C. Leahy;G. Attwood;R. Ronimus;Gemma Henderson;Peter H. Janssen - 通讯作者:
Peter H. Janssen
Concentration of soluble c-Met in p from normal pregnant women and preeclampsia at different gestation
正常孕妇及子痫前期不同妊娠期血浆中可溶性c-Met浓度
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
I. Zeng;Yu Sun;Huixia Yang;Dong Li;Yu;Q. Liao;Yan - 通讯作者:
Yan
Drag enhancement and turbulence attenuation by small solid particles in an unstably stratified turbulent boundary layer
不稳定分层湍流边界层中小固体颗粒的阻力增强和湍流衰减
- DOI:
10.1063/1.5094103 - 发表时间:
2019-06 - 期刊:
- 影响因子:4.6
- 作者:
Dong Li;Kun Luo;Zhuo Wang;Wei Xiao;Jianren Fan - 通讯作者:
Jianren Fan
Prophylactic Clipping to Prevent Delayed Bleeding and Perforation After Endoscopic Submucosal Dissection and Endoscopic Mucosal Resection
预防性夹闭以防止内镜粘膜下剥离术和内镜粘膜切除术后迟发性出血和穿孔
- DOI:
10.1097/mcg.0000000000001721 - 发表时间:
2022 - 期刊:
- 影响因子:2.9
- 作者:
Wenxi Jiang;Li Cen;C. Dong;Shefeng Zhu;Zhe Shen;Dong Li - 通讯作者:
Dong Li
Dong Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dong Li', 18)}}的其他基金
IUCRC Preliminary Proposal Planning Grant UC Merced: Center for Memory System Research (CEMSYS)
IUCRC 初步提案规划拨款 加州大学默塞德分校:内存系统研究中心 (CEMSYS)
- 批准号:
2310919 - 财政年份:2023
- 资助金额:
$ 6.25万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316202 - 财政年份:2023
- 资助金额:
$ 6.25万 - 项目类别:
Standard Grant
NSF Student Travel Support for 2022 ACM Symposium on High-Performance Parallel and Distributed Computing (ACM HPDC)
NSF 学生为 2022 年 ACM 高性能并行和分布式计算研讨会 (ACM HPDC) 提供旅行支持
- 批准号:
2230513 - 财政年份:2022
- 资助金额:
$ 6.25万 - 项目类别:
Standard Grant
Collaborative Research: Elements: SciMem: Enabling High Performance Multi-Scale Simulation on Big Memory Platforms
协作研究:要素:SciMem:在大内存平台上实现高性能多尺度仿真
- 批准号:
2104116 - 财政年份:2021
- 资助金额:
$ 6.25万 - 项目类别:
Standard Grant
NSF Student Travel Support for 2019 ACM Symposium on High-Performance Parallel and Distributed Computing (ACM HPDC)
NSF 学生旅行支持 2019 年 ACM 高性能并行和分布式计算研讨会 (ACM HPDC)
- 批准号:
1928873 - 财政年份:2019
- 资助金额:
$ 6.25万 - 项目类别:
Standard Grant
Student Travel Support for ACM High-Performance Parallel and Distributed Computing (HPDC) 2018
2018 年 ACM 高性能并行和分布式计算 (HPDC) 学生差旅支持
- 批准号:
1803286 - 财政年份:2018
- 资助金额:
$ 6.25万 - 项目类别:
Standard Grant
CCF:Small:Collaborative Research: Taowu: A Heterogeneous Processing-in-Memory for High Performance Scientific Applications
CCF:Small:合作研究:Taowu:用于高性能科学应用的异构内存处理
- 批准号:
1718194 - 财政年份:2017
- 资助金额:
$ 6.25万 - 项目类别:
Standard Grant
CAREER: Application-centric, Reliable and Efficient High Performance Computing
职业:以应用为中心、可靠且高效的高性能计算
- 批准号:
1553645 - 财政年份:2016
- 资助金额:
$ 6.25万 - 项目类别:
Continuing Grant
CSR: Small: Collaborative Research: Exploring Portable Data Placement on Massively Parallel Platforms with Heterogeneous Memory Architectures
CSR:小型:协作研究:探索具有异构内存架构的大规模并行平台上的便携式数据放置
- 批准号:
1617967 - 财政年份:2016
- 资助金额:
$ 6.25万 - 项目类别:
Standard Grant
Overseas Travel Grant for a Maritime Logistics Symposium and a Research Visit at Shanghai
为海上物流研讨会和上海考察访问提供海外旅费资助
- 批准号:
EP/I005137/1 - 财政年份:2010
- 资助金额:
$ 6.25万 - 项目类别:
Research Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316161 - 财政年份:2023
- 资助金额:
$ 6.25万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
- 批准号:
2316176 - 财政年份:2023
- 资助金额:
$ 6.25万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316158 - 财政年份:2023
- 资助金额:
$ 6.25万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316201 - 财政年份:2023
- 资助金额:
$ 6.25万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316203 - 财政年份:2023
- 资助金额:
$ 6.25万 - 项目类别:
Continuing Grant