CAREER: Efficient and Reliable Data Transfer Services for Next Generation Research Networks

职业:为下一代研究网络提供高效可靠的数据传输服务

基本信息

项目摘要

Research networks are crucial for data intensive, distributed, and collaborative science projects as they provide high speed connectivity between research and education institutions. However, users of research networks are unable to efficiently utilize available resources as existing transfer applications suffer from scalability issues at high speeds. This project designs and develops a scalable and robust data transfer framework for next-generation research networks to improve their utilization. Enhanced network performance in research networks allows seamless execution of next generation distributed science applications, thereby paving the way for breakthrough discoveries to be made swiftly. This project also promotes collaboration between scientists at geographically separated institutions by means of reducing the time it takes to share data. In addition to research contributions, this project has strong education plan tightly integrated into its research plan. The plan involves trainings for scientists to help them better utilize advanced cyberinfrastructure resources when dealing with large scale data, game development for middle and high school students to teach networking concepts, and summer schools for high school students for underrepresented groups to teach programming and networking. As trend towards data intensive distributed science continues, it is becoming increasingly important to develop data transfer services that can scale to next generation terabit per second networks and beyond. To achieve this goal, this project focuses four key research directions: First, it innovates a modular file transfer architecture to separate I/O operations from network transfers to enable dynamic and component specific tuning. Second, it implements Quality of Service support for delay sensitive distributed workflows to meet their stringent performance requirements. Third, it develops scalable, secure, and low overhead integrity verification for file transfers through in network caching/computing and probabilistic error checking mechanisms. Fourth, it integrates the developed algorithms to commonly used workflow management systems to increase its adoption by a broader science community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
研究网络对于数据密集型、分布式和协作科学项目至关重要,因为它们提供研究和教育机构之间的高速连接。然而,研究网络的用户无法有效地利用可用资源,因为现有的传输应用程序在高速时遇到可扩展性问题。该项目为下一代研究网络设计和开发可扩展且强大的数据传输框架,以提高其利用率。研究网络中增强的网络性能允许无缝执行下一代分布式科学应用,从而为快速取得突破性发现铺平道路。该项目还通过减少共享数据所需的时间来促进地理上分散的机构的科学家之间的合作。除了研究贡献外,该项目还将强有力的教育计划紧密地融入其研究计划中。该计划包括对科学家进行培训,帮助他们在处理大规模数据时更好地利用先进的网络基础设施资源,为中学生和高中生开发游戏以教授网络概念,以及为高中生举办暑期学校,为弱势群体教授编程和网络知识。随着数据密集型分布式科学趋势的持续发展,开发可扩展到下一代太比特每秒网络及以上的数据传输服务变得越来越重要。为了实现这一目标,该项目重点关注四个关键研究方向:首先,它创新了模块化文件传输架构,将I/O操作与网络传输分开,以实现动态和组件特定的调整。其次,它为延迟敏感的分布式工作流程实施服务质量支持,以满足其严格的性能要求。第三,它通过网络缓存/计算和概率错误检查机制为文件传输开发可扩展、安全和低开销的完整性验证。第四,它将开发的算法集成到常用的工作流管理系统中,以提高其在更广泛的科学界的采用率。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Falcon: Fair and Efficient Online File Transfer Optimization
Falcon:公平高效的在线文件传输优化
In-Network Caching Assisted Error Recovery For File Transfers
网络内缓存辅助文件传输错误恢复
Use Only What You Need: Judicious Parallelism For File Transfers in High Performance Networks
仅使用您需要的:高性能网络中文件传输的明智并行性
Be SMART, Save I/O: A Probabilistic Approach to Avoid Uncorrectable Errors in Storage Systems
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Engin Arslan其他文献

Reliable Wide-Area Data Transfers for Streaming Workflows
适用于流式工作流程的可靠广域数据传输
Scalable Quantum Repeater Deployment Modeling
可扩展的量子中继器部署建模
  • DOI:
    10.48550/arxiv.2305.09855
  • 发表时间:
    2023-05-16
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Tasdiqul Islam;Engin Arslan
  • 通讯作者:
    Engin Arslan
Application-Level Optimization of Big Data Transfers through Pipelining, Parallelism and Concurrency
通过管道、并行性和并发性对大数据传输进行应用级优化
  • DOI:
    10.1109/tcc.2015.2415804
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    E. Yildirim;Engin Arslan;Jangyoung Kim;T. Kosar
  • 通讯作者:
    T. Kosar
RIVAChain: Blockchain-based Integrity Verification for File Transfers
Deep learning for the security of software-defined networks: a review
软件定义网络安全的深度学习:综述
  • DOI:
    10.1007/s10586-023-04069-9
  • 发表时间:
    2023-07-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Roya Taheri;Habib Ahmed;Engin Arslan
  • 通讯作者:
    Engin Arslan

Engin Arslan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Engin Arslan', 18)}}的其他基金

Elements: Adaptive End-to-End Parallelism for Distributed Science Workflows
要素:分布式科学工作流程的自适应端到端并行性
  • 批准号:
    2427408
  • 财政年份:
    2024
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
  • 批准号:
    2412329
  • 财政年份:
    2023
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Standard Grant
CAREER: Efficient and Reliable Data Transfer Services for Next Generation Research Networks
职业:为下一代研究网络提供高效可靠的数据传输服务
  • 批准号:
    2348281
  • 财政年份:
    2023
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Continuing Grant
Elements: Adaptive End-to-End Parallelism for Distributed Science Workflows
要素:分布式科学工作流程的自适应端到端并行性
  • 批准号:
    2209955
  • 财政年份:
    2022
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
  • 批准号:
    2007789
  • 财政年份:
    2020
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Standard Grant
CRII: OAC: Online Optimization of End-to-End Data Transfers in High Performance Networks
CRII:OAC:高性能网络中端到端数据传输的在线优化
  • 批准号:
    1850353
  • 财政年份:
    2019
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Standard Grant

相似国自然基金

混凝土框架结构动力连续倒塌的能量判定准则与高效可靠度分析方法
  • 批准号:
    52308197
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
考虑多场效应的大功率超低频超磁致伸缩换能器电声能量高效高可靠变换方法研究
  • 批准号:
    52377010
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
列车-桥梁系统地震时变可靠度评估的新型高效随机振动方法研究
  • 批准号:
    52308146
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于重要失效边界高效采样与精确拟合方法的大型结构抗连续倒塌可靠度设计
  • 批准号:
    52378126
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于自适应代理模型的山区大跨桥梁风致列车运行安全可靠性高效评估
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Efficient and Reliable Data Transfer Services for Next Generation Research Networks
职业:为下一代研究网络提供高效可靠的数据传输服务
  • 批准号:
    2348281
  • 财政年份:
    2023
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Continuing Grant
CAREER: Efficient and Reliable Electronic Structure Theories for Spectroscopic Properties of Strongly Correlated Systems
职业:强相关系统光谱特性的高效可靠的电子结构理论
  • 批准号:
    2044648
  • 财政年份:
    2021
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Continuing Grant
CAREER: Reliable and Efficient Data Encoding for Extreme-Scale Simulation and Analysis
职业:用于超大规模仿真和分析的可靠且高效的数据编码
  • 批准号:
    1751143
  • 财政年份:
    2018
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Continuing Grant
CAREER: Probabilistic Network Flow Theory: Embracing Emerging Big Data for Efficient, Reliable and Sustainable Multi-modal Transportation Systems
职业:概率网络流理论:拥抱新兴大数据,打造高效、可靠和可持续的多式联运系统
  • 批准号:
    1751448
  • 财政年份:
    2018
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Standard Grant
CAREER: Understanding and Combating Numerical Bugs for Reliable and Efficient Software Systems
职业:理解和对抗数字错误以实现可靠和高效的软件系统
  • 批准号:
    1750983
  • 财政年份:
    2018
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了