CAREER: Nonlinear THz electrodynamics of spin quasiparticles

职业:自旋准粒子的非线性太赫兹电动力学

基本信息

  • 批准号:
    2144256
  • 负责人:
  • 金额:
    $ 58.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Nontechnical abstract:Nearly all existing computing devices are based on the manipulation of the charge of electrons. Unfortunately, fundamental limits at which charge information can be transmitted and preserved is slowing down and preventing breakthrough technological advances in next-generation computing. Recent research has indicated that this impasse can be overcome by using the collective motion of the spin of electrons. The spin of an electron is like a microscopic bar magnet. Most magnetic materials can be thought of as consisting of these tiny electron magnets aligned and fixed in a geometric pattern. In certain materials, however, the quantum interactions between these electron magnets causes them to move synchronously rather than remaining aligned. These collective behaviors are called emergent spin quasiparticles, and they are predicted to have the unique ability to store and transmit information in the form of angular momentum while not carrying any electron charge. In this way, spin quasiparticles can potentially enable faster, more energy-efficient and robust computation than is currently possible. However, these particles are hard to detect, and the underlying rules governing their behavior are poorly understood. This research project fills this knowledge gap by developing experimental methods based on powerful light sources to directly observe and manipulate these spin quasiparticles. Simultaneously, the educational component of this project increases exposure of middle school students to modern physics concepts (such as quantum mechanics) through a traveling and interactive physics demonstration show called the “Physics Van.” Undergraduate students at the University of Illinois are also coached as part of this project to lead these demos, visit local schools, and mentor middle school students on viable future pathways into science and engineering fields.This project is jointly funded by the Condensed Matter Physics (CMP) and the Electronic and Photonic Materials (EPM) programs of the Division of Materials Research (DMR).Technical abstract: In a variety of magnetic insulators, strong interactions, geometric frustration, and low dimensionality intertwine to give emergent spin quasiparticles that can be viable platforms for quantum computation and efficient spintronics. Examples include fractionalized spin excitations (spinons) and antiferromagnetic magnon currents. This experimental project uses nonlinear optical response in the terahertz (THz) range to measure, characterize and ultimately manipulate these spin quasiparticles. The specific objectives are (1) identifying distinctive experimental signatures of spinons in the nonlinear THz susceptibility of quantum magnets as indicated by recent theoretical work; (2) driving coherent antiferromagnet currents in insulators using strong THz light-spin coupling; and (3) understanding decoherence and relaxation mechanisms of THz-induced spin excitations. The research effort is implemented by using newly developed multidimensional nonlinear THz spectroscopies on magnetic heterostructures having resonators specifically designed to enhance THz light-matter coupling. This approach allows highly controllable and adaptable settings for inducing the strongest possible light-matter coupling. Materials under study include two-dimensional quantum spin liquid candidates, one-dimensional spin chains that are known to host spinons, and trivial antiferromagnetic insulators. The nonlinear magnetic susceptibility and shift magnon currents in these materials is measured to systematically determine relaxation and decoherence properties of spin quasiparticles. This work establishes a framework for discovering new spin quasiparticles and implements nonlinear THz spectroscopy as a general method to probe material properties inaccessible in conventional linear spectroscopies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由《2021 年美国救援计划法案》(公法 117-2)资助。不幸的是,几乎所有现有的计算设备都基于电子电荷的操纵。电荷信息的传输和保存正在减慢并阻碍下一代计算的突破性技术进步。最近的研究表明,可以通过使用电子自旋的集体运动来克服这种僵局。大多数磁性材料可以被认为是由这些以几何图案排列和固定的微小电子磁体组成,但是在某些材料中,这些电子磁体之间的量子相互作用导致它们同步移动而不是保持排列。这些集体行为被称为涌现自旋准粒子,预计它们具有以角动量形式存储和传输信息的独特能力,同时不携带任何电子电荷,这样,自旋准粒子就有可能实现更快、更多的能量。高效且然而,这些粒子很难被检测到,并且人们对控制它们行为的基本规则知之甚少,该研究项目通过开发基于强大光源的实验方法来直接观察和操纵这些自旋,从而填补了这一知识空白。同时,该项目的教育部分还通过名为“物理范”的巡回互动物理演示节目增加了中学生对现代物理概念(例如量子力学)的接触。作为其中的一部分接受指导项目的目的是领导这些演示,参观当地学校,并指导中学生未来进入科学和工程领域的可行途径。该项目由凝聚态物理(CMP)和电子和光子材料(EPM)项目共同资助材料研究部(DMR)。技术摘要:在各种磁绝缘体中,强相互作用、几何挫败和低维交织在一起,产生了新兴的自旋准粒子,这些粒子可以成为量子计算和高效的可行平台自旋电子学的例子包括分段自旋激发(自旋子)和反铁磁磁振子电流。该实验项目使用太赫兹(THz)范围内的非线性光学响应来测量、表征并最终操纵这些自旋准粒子。最近的理论工作表明,量子磁体的非线性太赫兹磁化率中的自旋子特征;(2)驱动绝缘体中的相干反铁磁体电流;使用强太赫兹光自旋耦合;(3)了解太赫兹诱导自旋激发的退相干和弛豫机制该研究工作是通过使用新开发的多维非线性太赫兹光谱来实现的,该磁异质结构具有专门设计用于增强太赫兹光物质的谐振器。这种方法允许高度可控和适应性强的设置,以诱导最强的光-物质耦合。正在研究的材料包括二维量子自旋液体候选物、已知的一维自旋链。测量这些材料中的非线性磁化率和位移磁振子电流,以任意确定自旋准粒子的弛豫和退相干特性,并建立了一个发现新自旋准粒子的框架,并实现了非线性太赫兹光谱。探测传统线性光谱无法获得的材料特性的方法。该奖项反映了 NSF 的法定使命,并被认为值得支持通过使用基金会的智力优点和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fahad Mahmood其他文献

Impact of medial-to-lateral vs lateral-to-medial approach on short-term and cancer-related outcomes in laparoscopic colorectal surgery: A retrospective cohort study
腹腔镜结直肠手术中内侧到外侧与外侧到内侧入路对短期和癌症相关结果的影响:回顾性队列研究
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    A. Hussain;Fahad Mahmood;A. Torrance;A. Tsiamis
  • 通讯作者:
    A. Tsiamis
Ultrafast THz emission spectroscopy of spin currents in the metamagnet FeRh
超磁体 FeRh 中自旋电流的超快太赫兹发射光谱
  • DOI:
    10.1063/5.0201789
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Yinchuan Lv;Soho Shim;Jonathan Gibbons;A. Hoffmann;Nadya Mason;Fahad Mahmood
  • 通讯作者:
    Fahad Mahmood
Epileptic seizures as a manifestation of cow’s milk allergy: a studied relationship and description of our pediatric experience
癫痫发作是牛奶过敏的一种表现:研究关系和我们儿科经验的描述
  • DOI:
    10.1586/1744666x.2014.977259
  • 发表时间:
    2014-11-19
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    R. Falsaperla;P. Pavone;S. Miceli Sopo;Fahad Mahmood;Ferdin;o Scalia;o;G. Corsello;R. Lubrano;G. Vitaliti
  • 通讯作者:
    G. Vitaliti
Association between centre volume and allocation to curative surgery and long-term survival for retroperitoneal sarcoma
腹膜后肉瘤的中心体积和根治性手术分配与长期生存之间的关系
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    S. Kamarajah;M. Baia;David Naumann;Fahad Mahmood;A. Parente;M. Almond;F. Tirotta;S. Ford;F. Dahdaleh;A. Desai
  • 通讯作者:
    A. Desai
Modelling inborn errors of metabolism in zebrafish
斑马鱼先天性代谢缺陷建模

Fahad Mahmood的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于双色场激发辐射太赫兹波的新型材料非线性特性研究
  • 批准号:
    62375199
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
基于太赫兹发射光谱的超表面光子自旋霍尔效应非线性响应研究
  • 批准号:
    12374315
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
太赫兹大规模MIMO通信系统非线性失真校正方法研究
  • 批准号:
    62301394
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于磁性拓扑材料的非线性霍尔效应增强型室温太赫兹探测器研究
  • 批准号:
    62304241
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
石墨烯在太赫兹频段的新奇量子非线性光学效应及调控
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Probing Intermolecular Dynamics with Nonlinear Ultrafast THz Spectroscopy
用非线性超快太赫兹光谱探测分子间动力学
  • 批准号:
    2316042
  • 财政年份:
    2023
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Standard Grant
Novel measures of thermalization and time-evolution of strongly correlated, disordered, and topological systems by nonlinear THz spectroscopy
通过非线性太赫兹光谱测量强相关、无序和拓扑系统的热化和时间演化的新方法
  • 批准号:
    2226666
  • 财政年份:
    2023
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Standard Grant
THz source development for THz nonlinear optics and industrial applications
太赫兹非线性光学和工业应用的太赫兹源开发
  • 批准号:
    RGPIN-2017-05826
  • 财政年份:
    2022
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Discovery Grants Program - Individual
New Frontiers in Ultrafast High-Field Plasmonics, Nonlinear Nanoplasmonics, Plasmoelectronics, and THz Spinplasmonics
超快高场等离子体激元、非线性纳米等离子体激元、等离子体电子学和太赫兹自旋等离子体激元的新前沿
  • 批准号:
    RGPIN-2020-03999
  • 财政年份:
    2022
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Discovery Grants Program - Individual
New Frontiers in Ultrafast High-Field Plasmonics, Nonlinear Nanoplasmonics, Plasmoelectronics, and THz Spinplasmonics
超快高场等离子体激元、非线性纳米等离子体激元、等离子体电子学和太赫兹自旋等离子体激元的新前沿
  • 批准号:
    RGPIN-2020-03999
  • 财政年份:
    2022
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了