CAREER: Dynamics and thermodynamics of ultra-strong glassformers
职业:超强玻璃形成剂的动力学和热力学
基本信息
- 批准号:2143815
- 负责人:
- 金额:$ 65.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in part under the American Rescue Plan Act of 2021 (Public Law 117-2).NON-TECHNICAL SUMMARYThis CAREER award supports an integrated program of theoretical research, computational study, and educational activity on a novel type of disordered solids, ``ultra-strong glasses''. What makes a material a solid? Crystalline materials have their atoms and molecules organized into neatly repeating patterns -- breaking up these repeating patterns costs energy, and the result is a material that resists deformation, that is, one that is solid. Glassy materials -- which can be made from silica as in ordinary window glass but also many other polymeric, molecular, or colloidal liquids -- are quite different: unlike orderly crystals their components are disordered, and their viscosity can vary enormously when their temperature is varied very slightly. These materials start out looking and behaving like a liquid but quickly become more and more sluggish as the temperature is decreased until, eventually, their motion is so imperceptible and the time for the molecules to flow around each other is so long that the whole system acts like a solid rather than a liquid.Almost all disordered materials follow two characteristic patterns for the precise way that their dynamics slow down, leading to a categorization of glasses as either "fragile" or "strong." Very recently there has been evidence of a third type of glass, an “ultra-strong” glass, whose dynamics and material properties would be much less sensitive to changing temperature than strong or fragile glasses. This unusual type of glass has, so far, been observed in two seemingly disconnected systems: computational models of dense epithelial tissue (tissue that covers all body surfaces and line body cavities) and of low-density vitrimers (a type of plastic material). At present there is no theoretical understanding of why these very different materials systems share similar glassy dynamics, or why either of them have properties so different from usual glassy materials in the first place.To understand this new class of materials -- which will itself help enable strategies for the design of new engineered materials with the unusual properties that the computational models suggest – the PI will embark on a systematic combination of extensive computational modeling together with an effort to build a theoretical description of ultra-strong glasses. At its core, this research seeks to address two primary questions: 1.) What is the fundamental nature of an ultra-strong glass? 2.) What features of a physical system lead to it?This project also supports educational and outreach activities that are closely integrated with the research project. The computational work involves large-scale numerical simulations, and the PI will develop Graphical User Interfaces that allow these research tools to be easily used in classes that are part of both the undergraduate and graduate curriculum. The PI and his research group will engage in community outreach activities, including mentorship activities at local schools and public science talks aimed at promoting awareness of the role STEM (Science, Technology, Engineering, and Mathematics) research plays in materials that appear in the everyday world around us. The PI, as part of his commitment to broadening participation of underrepresented groups in the physical sciences, will continue his work interacting with and mentoring students at a Minority Serving Institution, engaging those students in active research, and encouraging them to see themselves as future STEM professionals.TECHNICAL SUMMARYThis CAREER award supports theoretical and computational research on a novel class of disordered solids, ultra-strong glassformers. Ultra-strong behavior has recently been observed in two seemingly unrelated computational models: the PI's study of a coarse-grained model of dense biological tissue, and another group's study of low-density vitrimers. A primary research goal is to understand the origin of this anomalous type of disordered dynamics. The project will systematically explore numerical simulations of a family of related models at low temperature, using numerical analyses to test whether existing theories of glassy dynamics can make accurate predictions when confronted with data from these unusual systems. In this way, the underlying assumptions and validity of the approximations of many theories for glassy behavior can be probed; the focus of these tests will be on predicted connections between local structure, thermodynamics, and mechanics on the one hand and system dynamics on the other.An important quantity for characterizing a given glassy system (both intellectually, and in determining the functionality and processing of glasses as materials) is the fragility index. Until recently the fragility index characterized all glassy systems as either strong or fragile, corresponding to exponential or super-exponential scaling of the alpha relaxation time with inverse temperature. These categorizes also harmonize with recent theoretical work on mean-field models which describe the behavior of structural glasses in the infinite-dimensional limit, but this categorization is challenged by anomalous behavior of ultra-strong glasses and their remarkable, sub-exponential dependence of their alpha relaxation time with inverse temperature.There is no current understanding of what microscopic aspects of the models studied lead to this anomalous behavior, and thus it is unclear if ultra-strong glassforming ability can be found or engineered in a much broader class of physical systems. To address this need, the research will use large-scale simulations, extensive numerical analysis, and theoretical tools from the study of disordered solids to uncover the origin of ultra-strong behavior in the generalized class of vertex and Voronoi models of dense cellular matter. A fundamental set of model components that lead to this type of anomalous glassy behavior will be proposed, allowing for new ultra-strong glassformers to be identified and investigated.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的部分资金来源是《2021 年美国救援计划法案》(公法 117-2)。非技术摘要该职业奖支持针对新型无序固体的理论研究、计算研究和教育活动的综合项目, “超强玻璃”是什么使材料成为固体?晶体材料的原子和分子排列成整齐的重复图案——打破这些重复图案需要消耗能量,结果就是一种材料。抗变形的材料,即固体材料——可以像普通窗玻璃一样由二氧化硅制成,也可以由许多其他聚合物、分子或胶体液体制成——与有序晶体不同,它们的成分是不同的。这些材料一开始看起来和表现得像液体,但随着温度降低,它们的粘度很快就会变得越来越迟缓,直到最终它们的运动变得如此。难以察觉,而且分子彼此围绕流动的时间太长,以至于整个系统的行为就像固体而不是液体。几乎所有无序材料都遵循两种特征模式,以精确地减慢其动力学速度,从而导致分类最近有证据表明存在第三种类型的玻璃,即“超强”玻璃,其动力学和材料特性对温度变化的敏感度远低于强玻璃或易碎玻璃。这种不寻常的玻璃。迄今为止,已在两个看似互不相关的系统中观察到:致密上皮组织(覆盖所有身体表面和线状体腔的组织)和低密度玻璃体(一种塑料材料)的计算模型。从理论上理解为什么这些非常不同的材料系统具有相似的玻璃态动力学,或者为什么它们首先具有与通常的玻璃态材料如此不同的特性。了解这种新型材料——这本身将有助于实现设计策略新型工程材料计算模型所表明的不寻常特性——PI 将开始系统地结合广泛的计算模型,并努力建立超强玻璃的理论描述。这项研究的核心旨在解决两个主要问题:1。 .) 超强玻璃的基本性质是什么? 2.) 物理系统的哪些特征导致了它?该项目还支持与研究项目紧密结合的教育和推广活动。规模数值模拟,PI 将开发图形用户使这些研究工具能够在本科生和研究生课程的课堂上轻松使用的界面,PI 和他的研究小组将参与社区外展活动,包括当地学校的辅导活动和旨在提高认识的公共科学讲座。 STEM(科学、技术、工程和数学)研究在我们周围日常世界中出现的材料中所发挥的作用,作为其致力于扩大物理科学中代表性不足群体的参与的一部分,PI 将继续他的工作。与 和 互动技术摘要该职业奖支持对一类新型无序固体的理论和计算研究,超强玻璃形成剂导师最近在两个看似无关的计算模型中观察到了超强行为:PI 对致密生物的粗粒度模型的研究。组织,以及另一组对低密度玻璃体 A 原代的研究。研究目标是了解这种反常类型的无序动力学的起源,该项目将系统地探索一系列相关模型在低温下的数值模拟,利用数值分析来测试现有的玻璃态动力学理论是否能够做出准确的预测。通过这种方式,可以探讨许多玻璃行为理论的基本假设和近似的有效性;一方面,这些测试的重点将放在局部结构、热力学和力学之间的预测联系上。和系统动力学另一方面。表征给定玻璃系统(无论是在智力上还是在确定玻璃作为材料的功能和加工方面)的一个重要量是脆性指数,直到最近,脆性指数将所有玻璃系统表征为坚固或易碎,相应的。这些类别也与最近关于平均场模型的理论工作相一致,该模型描述了结构玻璃在无限维极限下的行为,但这种分类受到了挑战。超强玻璃的异常行为及其 α 弛豫时间与温度倒数的显着亚指数依赖性。目前尚不清楚所研究模型的哪些微观方面导致了这种异常行为,因此尚不清楚超强玻璃是否会导致这种异常行为。 -可以在更广泛的物理系统中发现或设计强大的玻璃形成能力,为了满足这一需求,该研究将使用大规模模拟、广泛的数值分析和无序固体研究的理论工具来揭示玻璃的起源。致密细胞物质的广义顶点和 Voronoi 模型中的超强行为将被提出,导致这种类型的异常玻璃态行为的基本模型组件,从而允许识别和研究新的超强玻璃形成剂。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Sussman其他文献
Individual- and Neighborhood-Level Predictors of Mortality in Florida Colorectal Cancer Patients
佛罗里达州结直肠癌患者死亡率的个人和社区水平预测因子
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3.7
- 作者:
Stacey L Tannenbaum;Monique N. Hernandez;D. Dandan Zheng;Daniel Sussman;David J. Lee - 通讯作者:
David J. Lee
Daniel Sussman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
不同尺度锑纳米颗粒的钠化相变热力学与动力学研究
- 批准号:12374003
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
非晶态单相固溶体高熵合金热力学与动力学行为的结构演变机理
- 批准号:52371159
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
超引力黑洞的热力学全息和动力学对称
- 批准号:12365010
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
关联锂离子电池正极动力学-热力学与构效-失效机制的先进同步辐射研究
- 批准号:12375328
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
二元三组分共混体系的热力学平衡态和动力学研究
- 批准号:22373086
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Unraveling how Lipophilic Modulators Alter pLGIC Function via Interactions with the M4 Transmembrane Helix
揭示亲脂性调节剂如何通过与 M4 跨膜螺旋相互作用改变 pLGIC 功能
- 批准号:
10785755 - 财政年份:2023
- 资助金额:
$ 65.64万 - 项目类别:
Drug Retention and Tumor Distribution of Polymeric Micelles for Cancer Therapy
用于癌症治疗的聚合物胶束的药物保留和肿瘤分布
- 批准号:
10674967 - 财政年份:2022
- 资助金额:
$ 65.64万 - 项目类别:
Drug Retention and Tumor Distribution of Polymeric Micelles for Cancer Therapy
用于癌症治疗的聚合物胶束的药物保留和肿瘤分布
- 批准号:
10529767 - 财政年份:2022
- 资助金额:
$ 65.64万 - 项目类别:
A protein design- and structure-guided interrogation of signal transduction mechanisms
蛋白质设计和结构引导的信号转导机制询问
- 批准号:
10537123 - 财政年份:2022
- 资助金额:
$ 65.64万 - 项目类别:
Administrative Supplement to Purchase a High-Performance Computing System
购买高性能计算系统的行政补充
- 批准号:
10796074 - 财政年份:2021
- 资助金额:
$ 65.64万 - 项目类别: