A protein design- and structure-guided interrogation of signal transduction mechanisms
蛋白质设计和结构引导的信号转导机制询问
基本信息
- 批准号:10537123
- 负责人:
- 金额:$ 6.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAlgorithmsAreaBacteriaBehaviorBindingBiochemicalBiologicalBiological AssayBiophysical ProcessBiophysicsCellsChimera organismCollaborationsComplementComplexComputational BiologyCouplingCryoelectron MicroscopyDataData CollectionEngineeringEnvironmentExhibitsFingerprintGenetic TranscriptionGoalsGrowthIn VitroKnowledgeLibrariesLigand BindingLigandsMachine LearningMembraneMembrane ProteinsModelingMolecularMolecular ConformationMutateOutputPathogenicityPathway interactionsPhosphorylationPlantsPreparationPrevalenceProcessProtein DynamicsProtein EngineeringProteinsReceptor SignalingResearchSignal TransductionSpecificityStimulusStructureStructure-Activity RelationshipSystemTestingThermodynamicsTrainingTranslatingUniversitiesWorkX-Ray Crystallographybasebiological systemscareerconformerdata modelingdesignextracellularfitnessfungusgenerative adversarial networkinsightinterestmimeticsneural network algorithmnon-Nativeparticlepost-doctoral trainingprotein structureprotein-histidine kinasereceptorreconstitutionresponsescaffoldsensorsensor histidine kinaseskillsstructural biology
项目摘要
Project Summary/Abstract
Living cells have evolved intricate mechanisms to detect their environment and transduce signals across
biological membranes, inducing responses in organismal behavior. Despite the prevalence of these receptors,
our understanding of the discrete mechanisms by which signals are propagated across membranes is still
evolving. In this area, histidine kinases (HKs) are a predominant class of membrane receptors in bacteria, fungi,
and plants that regulate growth, survival, or pathogenicity. HKs sense diverse extracellular stimuli and transduce
a signal across the membrane and through multiple subdomains, activating a phosphorylation cascade and
inducing a transcriptional response. Early models proposed that HKs do so through large, rigid body shifts after
sensing extracellular stimuli. Subsequent work indicates that signals are passed between HK subdomains in a
step-wise manner, often through changes in protein dynamics, informing the hypothesis that signal transduction
is the result of thermodynamic coupling between subdomains of the HK complex. This further implies that many
conformations may be adopted in the course of HK signaling. To investigate the molecular and biophysical basis
of HK specificity and signal transduction, we propose a structure and protein design approach to interrogate
energetic thresholds, sensor specificity, and conformational bias in transmembrane signaling. First, rational and
de novo design will be used to generate non-native, thermodynamically tunable sensor domains to determine
what ligand-induced energetic response is sufficient to initiate signaling. This will be complemented with
experimental characterization of synthetic, orthogonal sensor domains identified through a sequence- and
structure-guided neural network algorithm. In parallel, we will pursue X-ray crystallography and cryo-electron
microscopy to elucidate the structure of HK complexes or isolated subdomains in various signaling states, to
inform assembly of structure-conformation-function relationships. This research will significantly advance our
understanding of energetics and dynamics in transmembrane signal transduction while advancing our ability to
use protein design and computational biology to interrogate and engineer complex biophysical mechanisms. The
proposed efforts will also directly fulfill the training goals of my postdoctoral tenure, affording the necessary skills
to prepare me for an independent research career studying and engineering signal transduction mechanisms.
项目概要/摘要
活细胞已经进化出复杂的机制来检测其环境并在不同的细胞之间传递信号
生物膜,诱导有机体行为反应。尽管这些受体很普遍,
我们对信号跨膜传播的离散机制的理解仍然是
不断发展。在这一领域,组氨酸激酶 (HK) 是细菌、真菌、
以及调节生长、存活或致病性的植物。 HKs 感知多种细胞外刺激并进行转导
信号穿过膜并通过多个子域,激活磷酸化级联,
诱导转录反应。早期的模型提出,HK 在运动后通过大的、刚体的变化来做到这一点。
感知细胞外刺激。后续工作表明信号在 HK 子域之间传递
逐步的方式,通常通过蛋白质动力学的变化,告知信号转导的假设
是 HK 复合体子域之间热力学耦合的结果。这进一步意味着许多
HK信令过程中可以采用构造。研究分子和生物物理基础
为了研究 HK 特异性和信号转导,我们提出了一种结构和蛋白质设计方法来探究
跨膜信号传导中的能量阈值、传感器特异性和构象偏差。第一、理性与
从头设计将用于生成非本地、热力学可调的传感器域,以确定
配体诱导的能量反应足以启动信号传导。这将得到补充
通过序列和识别的合成正交传感器域的实验表征
结构引导神经网络算法。与此同时,我们将研究 X 射线晶体学和冷冻电子学
显微镜阐明不同信号状态下 HK 复合物或分离子结构域的结构,
告知结构-构象-功能关系的组装。这项研究将极大地推进我们的
了解跨膜信号转导的能量学和动力学,同时提高我们的能力
使用蛋白质设计和计算生物学来探究和设计复杂的生物物理机制。这
拟议的努力也将直接实现我博士后任期的培训目标,提供必要的技能
为我的独立研究生涯做好准备,研究和工程信号转导机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Katherine Hatstat其他文献
Anna Katherine Hatstat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
- 批准号:82301257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
睡眠剥夺通过上调BMAL1/IL-17轴促进三级淋巴结构形成加重哮喘的研究
- 批准号:82300039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
S100A6通过调控ZNF750组蛋白甲基化促进糖尿病角质形成细胞分化障碍的机制研究
- 批准号:82302802
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肿瘤相关成纤维细胞通过CCL5/CCR5轴促进神经内分泌前列腺癌顺铂耐药的机制研究
- 批准号:82373358
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
鼻腔共生表皮葡萄球菌通过抗菌肽-moDC-CCL17通路抑制过敏性鼻炎的分子机制
- 批准号:82302595
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 6.72万 - 项目类别:
Improving Diagnosis in Gastrointestinal Cancer: Integrating Prediction Models into Routine Clinical Care
改善胃肠癌的诊断:将预测模型纳入常规临床护理
- 批准号:
10641060 - 财政年份:2023
- 资助金额:
$ 6.72万 - 项目类别:
A visualization interface for BRAIN single cell data, integrating transcriptomics, epigenomics and spatial assays
BRAIN 单细胞数据的可视化界面,集成转录组学、表观基因组学和空间分析
- 批准号:
10643313 - 财政年份:2023
- 资助金额:
$ 6.72万 - 项目类别:
Design and Pilot Test of A Prediabetes Digital Patient Activation Tool
糖尿病前期数字患者激活工具的设计和试点测试
- 批准号:
10648646 - 财政年份:2023
- 资助金额:
$ 6.72万 - 项目类别:
mAnaging siCkle CELl disease through incReased AdopTion of hydroxyurEa in Nigeria (ACCELERATE)
在尼日利亚通过增加羟基脲的使用来控制镰状细胞病(加速)
- 批准号:
10638598 - 财政年份:2023
- 资助金额:
$ 6.72万 - 项目类别: