CAREER: Multi-atomic Layered Electronic Metal-organic Materials
职业:多原子层状电子金属有机材料
基本信息
- 批准号:2143569
- 负责人:
- 金额:$ 66.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYMetal-organic hybrid materials (MOMs), such as coordination complexes, coordination polymers (CP), and metal-organic frameworks (MOFs), possess vast structural diversity and thus have been extensively investigated for magnetism, catalysis, sensing, gas storage and separation, and biomedical applications. Ideally, embedding the synthetic tunability of MOMs with the electronic properties (e.g., electrically conductive MOMs, called eMOMs) would expand the molecular functionality of conventional inorganic electronic materials, offering new opportunities to address challenges in many vital electronic/electrochemical devices, including wearable devices, sensors, electrocatalysts, and electrochemical energy storage. Unfortunately, to-date conventional MOMs are primarily insulators by nature. With this CAREER project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, Prof. Dawei Feng studies a general approach to synthesize new types of eMOMs based on two dimensional (2D) multiple layered atomic structures (M-eMOMs). This research utilizes the structural diversity of MOMs to unlock their full potential in advanced electronic and electrochemical devices. The PI and his team also partner with the Materials Research Science and Engineering Centers (MRSEC) education group and the Institute for Chemical Education (ICE) at University of Wisconsin-Madison to organize “Make MOFs at home” after school enrichment program. Through the integrated education plans, middle schoolers get hands-on experiences in synthesizing MOMs using safe, daily accessible materials to foster their interests in STEM, and undergraduate and graduate students receive interdisciplinary training in materials science, chemistry, and fabrication of energy storage devices. TECHNICAL SUMMARYThe compositional diversity and synthetic tunability of metal-organic materials (MOMs) give them great potential for a series of applications where precise tuning of structures and functionalities plays a vital role. Integration of electronic properties (e.g., electronic conductivity) into MOFs is of particular interest as it adds diverse functionalities on top of electronic properties, which greatly enriches the class of current electronic materials and the scope of their applications. However, the majority of MOMs are insulators with just a few exceptional examples, most of which adopt single atomic layered p-d π conjugated 2D structures. This NSF CAREER project develops new classes of electronically conducting MOMs, called eMOMs through assembling multi-atomic layered 2D structures with p-d σ conjugation, namely M-eMOMs. The metal species and organic ligands are systematically micro-tuned to manipulate the electronic characteristics and functionality of M-eMOMs. Kinetically controlled synthetic methodologies are adopted to achieve highly crystalline M-eMOM products for precise measurement of their intrinsic properties. This permits elucidation of fundamental aspects of interactions between the metal and organic building units and the subsequent impact on the bulk electronic properties. In turn, this research is poised to enable applications in various areas, including electrocatalysis and flexible electronic devices. This work not only provides a new platform to integrate metals with organic building units but also introduces new 2D material candidates with vastly expanded molecular engineering potential.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要金属有机杂化材料(MOM),例如配位配合物、配位聚合物(CP)和金属有机骨架(MOF),具有巨大的结构多样性,因此在磁性、催化、传感、气体等方面得到了广泛的研究。理想情况下,将 MOM 的合成可调性与电子特性结合起来(例如,导电 MOM,称为eMOM)将扩展传统无机电子材料的分子功能,为解决许多重要电子/电化学设备(包括可穿戴设备、传感器、电催化剂和电化学储能)中的挑战提供新的机会。不幸的是,迄今为止,传统的 MOM 主要是绝缘体。在材料研究部固态与材料化学项目的支持下,冯大伟教授通过这个职业项目研究了合成新型 eMOM 的通用方法。该研究基于二维 (2D) 多层原子结构 (M-eMOM),利用 MOM 的结构多样性来释放其在先进电子和电化学器件中的全部潜力。威斯康星大学麦迪逊分校工程中心 (MRSEC) 教育集团和化学教育研究所 (ICE) 组织“在家制作 MOF”课外强化计划,通过综合教育计划,中学生可以获得使用安全、日常可用的材料合成 MOM 的实践经验,以培养他们对 STEM 的兴趣,本科生和研究生接受材料科学、化学和储能设备制造方面的跨学科培训。 技术摘要金属的成分多样性和合成可调性。 -有机材料(MOM)在一系列应用中具有巨大的潜力,其中结构和功能的精确调节在 MOF 中的电子特性(例如电子导电性)的集成中发挥着至关重要的作用。特别令人感兴趣的是,它在电子性能的基础上增加了多种功能,极大地丰富了当前电子材料的类别及其应用范围。然而,大多数 MOM 都是绝缘体,只有少数例外,其中大多数采用单一材料。原子层状 p-d π 共轭 2D 结构 这个 NSF 职业项目通过组装具有 p-d σ 的多原子层状 2D 结构来开发新型电子导电 MOM,称为 eMOM。共轭,即M-eMOMs被系统地微调以操纵M-eMOMs的电子特性和功能,采用动力学控制的合成方法来获得高度结晶的M-eMOM产品,以精确测量其本征。这可以阐明金属和有机结构单元之间相互作用的基本方面以及随后对整体电子性能的影响,反过来,这项研究有望在包括电催化和柔性电子在内的各个领域得到应用。这项工作不仅提供了一个将金属与有机建筑单元相结合的新平台,而且还引入了具有极大扩展的分子工程潜力的新型二维材料候选者。该奖项反映了 NSF 的法定使命,并通过使用基金会的知识进行评估,被认为值得支持。优点和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dawei Feng其他文献
Diversity and Consistency: Exploring Visual Question-Answer Pair Generation
多样性和一致性:探索视觉问答对生成
- DOI:
10.18653/v1/2021.findings-emnlp.91 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:10.9
- 作者:
Sen Yang;Qingyu Zhou;Dawei Feng;Yang Liu;Chao Li;Yunbo Cao;Dongsheng Li - 通讯作者:
Dongsheng Li
Thermodynamic stability of AuSe at temperature from (400 to 700) K by a solid state galvanic cell
通过固态原电池研究 AuSe 在 (400 至 700) K 温度下的热力学稳定性
- DOI:
10.1016/j.jct.2013.11.031 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:0
- 作者:
Dawei Feng;P. Taskinen - 通讯作者:
P. Taskinen
Ranked Communication Channel Confidence for Multi-Agent Reinforcement Learning
多智能体强化学习的通信渠道置信度排名
- DOI:
10.1109/hpcc-smartcity-dss50907.2020.00038 - 发表时间:
2020-12-01 - 期刊:
- 影响因子:0
- 作者:
Dongzi Wang;Mingyang Geng;Bo Ding;Dawei Feng - 通讯作者:
Dawei Feng
Sample Dropout for Audio Scene Classification Using Multi-Scale Dense Connected Convolutional Neural Network
使用多尺度密集连接卷积神经网络进行音频场景分类的样本丢失
- DOI:
10.1007/978-3-319-97289-3_9 - 发表时间:
2018-06-12 - 期刊:
- 影响因子:0
- 作者:
Dawei Feng;Kele Xu;Haibo Mi;Feifan Liao;Yan Zhou - 通讯作者:
Yan Zhou
Viologen Hydrothermal Synthesis and Structure–Property Relationships for Redox Flow Battery Optimization
紫罗碱水热合成及氧化还原液流电池优化的结构-性能关系
- DOI:
10.1002/aenm.202203919 - 发表时间:
2023-07-18 - 期刊:
- 影响因子:27.8
- 作者:
P. Sullivan;Honghao Liu;Xin Lv;Song Jin;Wenjie Li;Dawei Feng - 通讯作者:
Dawei Feng
Dawei Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dawei Feng', 18)}}的其他基金
I-Corps: Neutral pH aqueous organic redox flow battery for grid energy storage
I-Corps:用于电网储能的中性 pH 水性有机氧化还原液流电池
- 批准号:
2226389 - 财政年份:2022
- 资助金额:
$ 66.53万 - 项目类别:
Standard Grant
相似国自然基金
二元金属原子团簇协同催化多硫化锂转化机制研究
- 批准号:22379001
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相互作用可调超冷原子气体中的光晶格的多体局域化与拓扑输运
- 批准号:12374245
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于还原性差异的单位点异核多原子设计及电解水动态稳定机制研究
- 批准号:52301291
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于单原子催化剂的全氟/多氟化合物荧光检测
- 批准号:22306010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多肽修饰Fe-Se双原子纳米酶多酶催化诱导细胞焦亡和Fe死亡治疗骨肉瘤的机制研究
- 批准号:52301303
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Effects of Diabetes on the Multiscale Mechanical Behavior of Clot Structures
糖尿病对血块结构多尺度力学行为的影响
- 批准号:
8367991 - 财政年份:2012
- 资助金额:
$ 66.53万 - 项目类别:
Effects of Diabetes of the Multiscale Mechanical Behavior of Clot Structures
糖尿病对凝块结构多尺度力学行为的影响
- 批准号:
9274399 - 财政年份:2012
- 资助金额:
$ 66.53万 - 项目类别:
Effects of Diabetes on the Multiscale Mechanical Behavior of Clot Structures
糖尿病对血块结构多尺度力学行为的影响
- 批准号:
8514720 - 财政年份:2012
- 资助金额:
$ 66.53万 - 项目类别:
Effects of Diabetes on the Multiscale Mechanical Behavior of Clot Structures
糖尿病对血块结构多尺度力学行为的影响
- 批准号:
8367991 - 财政年份:2012
- 资助金额:
$ 66.53万 - 项目类别:
Effects of Diabetes on the Multiscale Mechanical Behavior of Clot Structures
糖尿病对血块结构多尺度力学行为的影响
- 批准号:
8680367 - 财政年份:2012
- 资助金额:
$ 66.53万 - 项目类别: