CAREER: Towards a Communication Foundation for Distributed and Decentralized Machine Learning
职业:为分布式和去中心化机器学习建立通信基础
基本信息
- 批准号:2143559
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the emerging paradigm shift towards moving the data collection and machine learning (ML) model training to the edge, distributed and decentralized ML has become increasingly critical to empowering many applications, such as autonomous driving, recommender systems, and Internet of Things (IoT). This trend imposes formidable challenges on the underlying communication design and catalyzes its evolution from connecting people and connecting things to connecting intelligence. This CAREER project develops fundamental communication technologies to enable distributed and decentralized ML in next-generation wireless systems. It transforms wireless communications from pure data transfer to intelligence transfer, building a synergy between communications and ML in a closely integrated fashion. In partnership with industry, results enabled by this project can be prototyped and integrated into real systems, potentially impacting 6G standardization and other future communication systems. The cross disciplinary nature of this project naturally translates into case studies and new development in a number of undergraduate and graduate level courses, by integrating ML and AI to the curriculum of communications and networking. The education and outreach activities will collectively promote a common thread of providing the best opportunities for diverse groups of bright young minds to develop into future scientists and engineers.This project aims at developing the theoretical foundation and novel communication algorithms for distributed and decentralized ML, thereby catalyzing a paradigm shift of wireless communications towards connecting intelligence. Towards this end, this project will develop a novel random orthogonalization principle that tightly integrates physical layer communications with ML. Additionally, the research will study the impact of fading and noisy channels on the performance of ML, and design communication methods to improve the accuracy and convergence of the ML tasks. Finally, a novel adaptive communication method for distributed and decentralized multi-armed bandits will be investigated, where coding and interleaving designs for online learning with adversarial communications will be studied. The proposed research promotes the fundamental understanding of the synergy between distributed and decentralized ML and communications, and will have broad applications beyond the specific problems studied in this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着数据收集和机器学习 (ML) 模型训练向边缘转移的新兴范式转变,分布式和去中心化的 ML 对于支持自动驾驶、推荐系统和物联网 (IoT) 等许多应用程序变得越来越重要。这种趋势对底层通信设计提出了巨大的挑战,并促进了其从连接人、连接物到连接智能的演变。该 CAREER 项目开发基础通信技术,以在下一代无线系统中实现分布式和去中心化的机器学习。它将无线通信从纯粹的数据传输转变为情报传输,以紧密集成的方式在通信和机器学习之间建立协同作用。通过与业界合作,该项目的成果可以进行原型设计并集成到实际系统中,这可能会影响 6G 标准化和其他未来的通信系统。通过将机器学习和人工智能整合到通信和网络课程中,该项目的跨学科性质自然地转化为案例研究和许多本科生和研究生水平课程的新发展。教育和推广活动将共同促进一个共同点,即为不同群体的聪明年轻人提供发展成为未来科学家和工程师的最佳机会。该项目旨在为分布式和去中心化机器学习开发理论基础和新颖的通信算法,从而促进无线通信向连接智能的范式转变。为此,该项目将开发一种新颖的随机正交化原理,将物理层通信与机器学习紧密集成。此外,该研究还将研究衰落和噪声信道对机器学习性能的影响,并设计通信方法以提高机器学习任务的准确性和收敛性。最后,将研究一种用于分布式和去中心化多臂强盗的新型自适应通信方法,其中将研究用于对抗性通信的在线学习的编码和交织设计。拟议的研究促进了对分布式和去中心化机器学习与通信之间协同作用的基本理解,并将具有超出本项目研究的具体问题的广泛应用。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,被认为值得支持。智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Teaching Reinforcement Learning Agents via Reinforcement Learning
通过强化学习教授强化学习代理
- DOI:10.1109/ciss56502.2023.10089695
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Yang, Kun;Shi, Chengshuai;Shen, Cong
- 通讯作者:Shen, Cong
Provably Efficient Offline Reinforcement Learning with Perturbed Data Sources
使用扰动数据源进行可证明高效的离线强化学习
- DOI:
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Shi, C.;Xiong, W.;Shen, C.;Yang, J.
- 通讯作者:Yang, J.
Nearly Minimax Optimal Offline Reinforcement Learning with Linear Function Approximation: Single-Agent MDP and Markov Game
具有线性函数逼近的近极小极大最优离线强化学习:单智能体 MDP 和马尔可夫博弈
- DOI:
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Xiong, Wei;Zhong, Han;Shi, Chengshuai;Shen, Cong;Wang, Liwei;Zhang, Tong
- 通讯作者:Zhang, Tong
Near-optimal Conservative Exploration in Reinforcement Learning under Episode-wise Constraints
逐集约束下强化学习的近最优保守探索
- DOI:
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Li, D.;Huang, R.;Shen, C.;Yang, J.
- 通讯作者:Yang, J.
Federated Learning via Indirect Server-Client Communications
通过间接服务器-客户端通信进行联合学习
- DOI:10.1109/ciss56502.2023.10089783
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Bian, Jieming;Shen, Cong;Xu, Jie
- 通讯作者:Xu, Jie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cong Shen其他文献
Deep Reinforcement Learning based Wireless Network Optimization: A Comparative Study
基于深度强化学习的无线网络优化:比较研究
- DOI:
10.1109/infocomwkshps50562.2020.9162925 - 发表时间:
2020-07-01 - 期刊:
- 影响因子:0
- 作者:
Kun Yang;Cong Shen;Tie Liu - 通讯作者:
Tie Liu
Provably Efficient Offline Reinforcement Learning with Perturbed Data Sources
使用扰动数据源进行可证明高效的离线强化学习
- DOI:
10.48550/arxiv.2306.08364 - 发表时间:
2023-06-14 - 期刊:
- 影响因子:0
- 作者:
Chengshuai Shi;Wei Xiong;Cong Shen;Jing Yang - 通讯作者:
Jing Yang
Random Orthogonalization for Federated Learning in Massive MIMO Systems
大规模 MIMO 系统中联邦学习的随机正交化
- DOI:
10.1109/twc.2023.3302335 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:10.4
- 作者:
Xizixiang Wei;Cong Shen;Charles L. Brown;Jing Yang - 通讯作者:
Jing Yang
38.3: Synthesis of Highly Luminescent InP‐based Core/shell/shell Colloidal Quantum Dots
38.3:高发光InP基核/壳/壳胶体量子点的合成
- DOI:
10.1002/sdtp.15965 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:0
- 作者:
Cong Shen;Yanqing Zhu;Xueqing Xu - 通讯作者:
Xueqing Xu
A retrospective study of SPECT/CT scans using SUV measurement of the normal pelvis with Tc-99m methylene diphosphonate.
使用 Tc-99m 亚甲基二磷酸盐对正常骨盆进行 SUV 测量,对 SPECT/CT 扫描进行回顾性研究。
- DOI:
10.3233/xst-180391 - 发表时间:
2018-04-10 - 期刊:
- 影响因子:0
- 作者:
Ruifeng Wang;Xiaoyi Duan;Cong Shen;D. Han;Junchao Ma;Hulin Wu;Xiaotong Xu;Tao Qin;Qiuju Fan;Zhaoguo Zhang;Weihua Shi;Youmin Guo - 通讯作者:
Youmin Guo
Cong Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cong Shen', 18)}}的其他基金
Collaborative Research: CPS Medium: Learning through the Air: Cross-Layer UAV Orchestration for Online Federated Optimization
合作研究:CPS 媒介:空中学习:用于在线联合优化的跨层无人机编排
- 批准号:
2313110 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: SMALL: Learning-Efficient Spectrum Access for No-Sensing Devices in Shared Spectrum
合作研究:SWIFT:SMALL:共享频谱中无感知设备的学习高效频谱访问
- 批准号:
2029978 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CCSS: Collaborative Research: Towards a Resource Rationing Framework for Wireless Federated Learning
CCSS:协作研究:无线联邦学习的资源配给框架
- 批准号:
2033671 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
- 批准号:
2002902 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
脚手架蛋白RanBP9通过调控细胞周期停滞和获得SASP介导应激性衰老促进AKI向CKD转化的作用及机制
- 批准号:82300777
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Fbxw7缺失促进EGFR突变肺腺癌向肺鳞癌转分化的功能和机制研究
- 批准号:82303039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
深大水库热分层驱动下微塑料垂向迁移特征及其动态影响机制
- 批准号:42377263
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于颅内外同步静息态脑电与多尺度有向脑网络的致痫区定位研究
- 批准号:82371453
- 批准年份:2023
- 资助金额:65 万元
- 项目类别:面上项目
巨噬细胞来源的CCL1通过NF-κB/GLI1/KLF4通路调控血管平滑肌细胞向肌成纤维细胞的表型转化从而促进川崎病冠脉狭窄病变的机制研究
- 批准号:82370510
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
相似海外基金
CAREER: Towards a complete picture of communication in anthropogenic noise - Auditory processing among urban and rural soundscapes.
职业:全面了解人为噪音中的交流——城市和乡村声景中的听觉处理。
- 批准号:
2414003 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Towards Privacy-Preserving Wireless Communication: Fundamental Limits and Coding Schemes
职业:走向保护隐私的无线通信:基本限制和编码方案
- 批准号:
2401373 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Towards the understanding of how chaperones function and prevent amyloidogenic diseases
了解伴侣如何发挥作用并预防淀粉样蛋白形成疾病
- 批准号:
10734397 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Towards equitable early identification of autism spectrum disorders in females
实现女性自闭症谱系障碍的公平早期识别
- 批准号:
10722011 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
CAREER: Towards a complete picture of communication in anthropogenic noise - Auditory processing among urban and rural soundscapes.
职业:全面了解人为噪音中的交流——城市和乡村声景中的听觉处理。
- 批准号:
2145793 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant