CCSS: Collaborative Research: Towards a Resource Rationing Framework for Wireless Federated Learning

CCSS:协作研究:无线联邦学习的资源配给框架

基本信息

  • 批准号:
    2033671
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Federated learning (FL) is an emerging distributed machine learning paradigm that has many attractive properties. Despite the early studies that have demonstrated the potential of jointly optimizing communication and computation, existing designs are not tailored to the unique characteristics of FL. This project aims at developing a novel and rigorous resource allocation framework for wireless FL, which we term resource rationing to emphasize balancing resources over time so that the long-term impact to the final learning outcome is explicitly captured. Resource rationing is built on a rigorous theoretical foundation and guides the algorithmic development that solves specific resource allocation problems in both physical and Media Access Control (MAC) layers. Federated learning is an emerging new application for wireless communications, and this project has potential to advance the technology development of this new use case. Meanwhile, the theoretical foundation, algorithms, and validation will broadly advance the state of the art in machine learning, communication theory, and wireless networking. Developing such practical and impactful technology would also help maintain the leadership of the United States in wireless technologies as well as keep the pipeline to supply high-quality, well-trained, and innovative engineers.The project pursues synergistic activities for the successful design and implementation of resource rationing for wireless FL. Novel convergence analysis of FL with varying resource in each learning round is carried out, which establishes the general later-is-better principle. Guided by the theoretical foundation, the project further builds a comprehensive algorithmic framework for specific resource rationing designs, ranging from physical layer bit loading and adaptive coding and modulation to the MAC layer client selection, bandwidth allocation, and power control.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
联邦学习(FL)是一种新兴的分布式机器学习范式,具有许多吸引人的特性。尽管早期研究已经证明了联合优化通信和计算的潜力,但现有设计并未针对 FL 的独特特征进行定制。该项目旨在为无线 FL 开发一种新颖且严格的资源分配框架,我们将其称为资源配给,以强调随着时间的推移平衡资源,以便明确捕获对最终学习成果的长期影响。资源配给建立在严格的理论基础上,并指导解决物理层和媒体访问控制(MAC)层中特定资源分配问题的算法开发。联邦学习是无线通信的一种新兴应用,该项目有潜力推动这一新用例的技术开发。同时,理论基础、算法和验证将广泛推进机器学习、通信理论和无线网络的最新技术水平。开发这种实用且有影响力的技术还将有助于保持美国在无线技术领域的领先地位,并保持供应高素质、训练有素和创新工程师的渠道。该项目追求协同活动,以实现成功的设计和实施无线 FL 的资源配给。对每轮学习中具有不同资源的 FL 进行了新颖的收敛分析,建立了一般的“稍后更好”原则。在理论基础的指导下,该项目进一步构建了针对特定资源配给设计的全面算法框架,从物理层比特加载、自适应编码和调制到MAC层客户端选择、带宽分配和功率控制。该奖项体现了NSF的法定要求使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Federated Learning over Noisy Channels
嘈杂通道上的联邦学习
On the Convergence of Hybrid Federated Learning with Server-Clients Collaborative Training
混合联邦学习与服务器端协同训练的融合
Resource Rationing for Wireless Federated Learning: Concept, Benefits, and Challenges
无线联合学习的资源配给:概念、优势和挑战
  • DOI:
    10.1109/mcom.001.2000744
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Shen, Cong;Xu, Jie;Zheng, Sihui;Chen, Xiang
  • 通讯作者:
    Chen, Xiang
Exploiting Feature Heterogeneity for Improved Generalization in Federated Multi-task Learning
利用特征异构性提高联邦多任务学习的泛化能力
A Self-Play Posterior Sampling Algorithm for Zero-Sum Markov Games
零和马尔可夫博弈的自博后验采样算法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cong Shen其他文献

Decentralized Multi-player Multi-armed Bandits with No Collision Information
无碰撞信息的去中心化多人多臂强盗
  • DOI:
    10.1109/isit44484.2020.9174297
  • 发表时间:
    2020-02-29
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chengshuai Shi;Wei Xiong;Cong Shen;Jing Yang
  • 通讯作者:
    Jing Yang
Feeder Power Flow Control Strategy for Flexible Multi-state Switch with Joint Access to the Distributed Generation
分布式发电联合接入的灵活多状态切换馈线潮流控制策略
Associations between anti-mitochondrial antibodies and cardiac involvement in idiopathic inflammatory myopathy patients
特发性炎症性肌病患者抗线粒体抗体与心脏受累之间的关联
  • DOI:
    10.1007/s00393-022-01216-2
  • 发表时间:
    2022-05-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hui Wang;Yuan;Jing Hu;J. Jin;Jun Lu;Cong Shen;Zhaobin Cai
  • 通讯作者:
    Zhaobin Cai
A retrospective study of SPECT/CT scans using SUV measurement of the normal pelvis with Tc-99m methylene diphosphonate.
使用 Tc-99m 亚甲基二磷酸盐对正常骨盆进行 SUV 测量,对 SPECT/CT 扫描进行回顾性研究。
  • DOI:
    10.3233/xst-180391
  • 发表时间:
    2018-04-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruifeng Wang;Xiaoyi Duan;Cong Shen;D. Han;Junchao Ma;Hulin Wu;Xiaotong Xu;Tao Qin;Qiuju Fan;Zhaoguo Zhang;Weihua Shi;Youmin Guo
  • 通讯作者:
    Youmin Guo
Deep Reinforcement Learning based Wireless Network Optimization: A Comparative Study
基于深度强化学习的无线网络优化:比较研究

Cong Shen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cong Shen', 18)}}的其他基金

Collaborative Research: CPS Medium: Learning through the Air: Cross-Layer UAV Orchestration for Online Federated Optimization
合作研究:CPS 媒介:空中学习:用于在线联合优化的跨层无人机编排
  • 批准号:
    2313110
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Towards a Communication Foundation for Distributed and Decentralized Machine Learning
职业:为分布式和去中心化机器学习建立通信基础
  • 批准号:
    2143559
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: SWIFT: SMALL: Learning-Efficient Spectrum Access for No-Sensing Devices in Shared Spectrum
合作研究:SWIFT:SMALL:共享频谱中无感知设备的学习高效频谱访问
  • 批准号:
    2029978
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
  • 批准号:
    2002902
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
  • 批准号:
    2332173
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
  • 批准号:
    2332172
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Towards Energy-Efficient Millimeter Wave Wireless Networks: A Unified Systems and Circuits Framework
合作研究:CCSS:迈向节能毫米波无线网络:统一系统和电路框架
  • 批准号:
    2242700
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319780
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Continuous Facial Sensing and 3D Reconstruction via Single-ear Wearable Biosensors
合作研究:CCSS:通过单耳可穿戴生物传感器进行连续面部传感和 3D 重建
  • 批准号:
    2401415
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了