Collaborative Research: PlantSynBio: Deciphering the roles of genetic and biochemical redundancy and pathway regulation via refactoring the protective plant cuticle
合作研究:PlantSynBio:通过重构保护性植物角质层破译遗传和生化冗余以及途径调节的作用
基本信息
- 批准号:2212800
- 负责人:
- 金额:$ 51.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As stationary organisms that are faced with surviving constantly changing environments, plants have evolved specialized features to protect against environmental stresses. One of these features is an exterior protective barrier on aerial plant surfaces called the cuticle. The cuticle acts as a physical barrier between the plant and its environment, functioning to limit the loss of water and gasses. Although many key genes that function in making the cuticle have been identified, a holistic view of how the cuticle is built is missing. This project will engineer two novel, parallel synthetic biology systems that are normally devoid of a cuticle (yeast cells and plant roots) to build a cuticle from scratch and decipher the complexities of the biochemical pathways underlying this unique plant feature. Systematically determining how a cuticle is built will lead to important applications such as the breeding of crop plants with customized cuticles that may have enhanced tolerance to environmental stresses, as well as cuticle-inspired chemicals for the biorenewables industry. Moreover, this project will train the next generation of multi-disciplinary scientists, and build teaching and research initiatives with the ultimate goal of increasing the proportion of the scientific workforce who are from STEM-underrepresented backgrounds.This multi-disciplinary project will build and test two synergistic synthetic biology chassis in systems that do not naturally produce a cuticle (i.e., plant roots and the yeast Saccharomyces cerevisiae) to systematically refactor the transcriptional regulatory network, and the metabolic pathways that assemble the protective, hydrophobic cuticle barrier. These two synthetic chassis will be used to comprehensively model and quantitatively understand the integrated mechanisms that assemble a functional plant cuticle. The root chassis will be used to study the coordinated activation of cuticle assembly by plant transcription factors. This chassis will provide temporal transcriptional and metabolic data to enable the development of dynamic predictive models that provide a holistic view of cuticle metabolism and its associated regulation. A second chassis relies on multiple engineered yeast plug-and-play systems expressing different genetic complements capturing the gene redundancies within the pathway that will be assessed for the production of synthetic cuticle constituents. The metabolic data generated from these strains will be the inputs for kinetic modeling, which will provide the first kinetic understanding of this complex pathway. The coordinated development of the plant root and yeast chassis in combination with the proposed computational framework will provide a novel platform for discovery, and systematic analysis of cuticle assembly.This award was co-funded by the Systems and Synthetic Biology Cluster in the Division of Molecular and Cellular Biosciences and by the Plant Genome Research Program in the Division of Integrative Organismal Systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
作为固定的生物,面临着不断变化的环境,植物已经进化出了专门的特征,以防止环境压力。 这些特征之一是称为角质层的空中植物表面上的外部保护屏障。角质层充当植物及其环境之间的物理障碍,其作用限制了水和气体的损失。尽管已经确定了许多在使角质层发挥作用的关键基因,但缺少角质层的整体观点。该项目将设计两个新颖的平行合成生物学系统,这些系统通常没有角质层(酵母细胞和植物根),以从划痕中构建角质层并破译这种独特植物特征的生化途径的复杂性。系统地确定如何建立角质层将导致重要的应用,例如具有定制角质层的作物植物的繁殖,这些植物可能增强了对环境压力的耐受性,以及对生物生物行业的角质层风格的化学物质。此外,该项目将培训下一代的多学科科学家,并建立教学和研究计划,其最终目标是增加来自代表性不足的背景的科学劳动力的比例。这些多学科项目将在系统中构建和测试两种协同合成生物学的秘密造型,这些杂物在系统中不会自然地生产出界限(即Y.E.E. coticle)(即,I.E.Ee.E.Ecro),即ro。酿酒酵母)系统地重构转录调节网络,以及组装保护性的疏水性角质层屏障的代谢途径。这两个合成机箱将用于全面建模,并定量了解组装功能性植物角质层的综合机制。根机箱将用于研究通过植物转录因子对角质层组装的协调激活。该机箱将提供时间转录和代谢数据,以使动态预测模型的发展提供了对角质层代谢及其相关调节的整体视野。第二个底盘依靠多个工程酵母插件系统,表达了不同的遗传补充,以捕获途径内的基因冗余,以评估用于生产合成角质层成分的基因。这些菌株产生的代谢数据将是动力学建模的输入,这将提供对这一复杂途径的第一个动力学理解。植物根和酵母底盘的协调开发与所提出的计算框架结合使用,将为发现角质层组装的系统分析提供新的平台。该奖项由分子和细胞生物学家的系统和合成生物学群集共同提供,并由分子和细胞生物学家的划分和植物基因组的统计范围内的统计范围内的统计信息。通过使用基金会的知识分子和更广泛影响的评论标准来通过评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erin Sparks其他文献
Morphological awareness predicts reading comprehension in first grade students
形态意识预测一年级学生的阅读理解能力
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.3
- 作者:
Erin Sparks;J. Metsala - 通讯作者:
J. Metsala
Erin Sparks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erin Sparks', 18)}}的其他基金
Quantifying Crop Biomechanics Across Plant Lifespans
量化作物整个生命周期的生物力学
- 批准号:
2040346 - 财政年份:2021
- 资助金额:
$ 51.93万 - 项目类别:
Standard Grant
Collaborative Research: Linking brace root development and function in maize
合作研究:将玉米支撑根的发育和功能联系起来
- 批准号:
2109189 - 财政年份:2021
- 资助金额:
$ 51.93万 - 项目类别:
Standard Grant
相似国自然基金
植物性饮食及肠木质素与非酒精性脂肪性肝病人群肝纤维化发生风险的前瞻性研究
- 批准号:82373673
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
整合生态系统通量观测与植物性状的中国东北样带年总初级生产力时空变异机制研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
木本植物性状权衡关系的机制研究
- 批准号:31971495
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
基于植物性生物吸附剂的真菌改性与染料吸附及降解研究
- 批准号:51503074
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
喀斯特地区铁线蕨属植物性状比较及高钙适应策略研究
- 批准号:31560089
- 批准年份:2015
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: TRTech-PGR: PlantSynBio: FuncZyme: Building a pipeline for rapid prediction and functional validation of plant enzyme activities
合作研究:TRTech-PGR:PlantSynBio:FuncZyme:建立植物酶活性快速预测和功能验证的管道
- 批准号:
2310396 - 财政年份:2023
- 资助金额:
$ 51.93万 - 项目类别:
Standard Grant
Collaborative Research: TRTech-PGR: PlantSynBio: FuncZyme: Building a pipeline for rapid prediction and functional validation of plant enzyme activities
合作研究:TRTech-PGR:PlantSynBio:FuncZyme:建立植物酶活性快速预测和功能验证的管道
- 批准号:
2310395 - 财政年份:2023
- 资助金额:
$ 51.93万 - 项目类别:
Standard Grant
Collaborative Research: PlantSynBio: Deciphering the roles of genetic and biochemical redundancy and pathway regulation via refactoring the protective plant cuticle
合作研究:PlantSynBio:通过重构保护性植物角质层破译遗传和生化冗余以及途径调节的作用
- 批准号:
2212801 - 财政年份:2022
- 资助金额:
$ 51.93万 - 项目类别:
Standard Grant
Collaborative Research: PlantSynBio: Deciphering the roles of genetic and biochemical redundancy and pathway regulation via refactoring the protective plant cuticle
合作研究:PlantSynBio:通过重构保护性植物角质层破译遗传和生化冗余以及途径调节的作用
- 批准号:
2212799 - 财政年份:2022
- 资助金额:
$ 51.93万 - 项目类别:
Continuing Grant
Collaborative Research: PlantSynBio: Identification and Design of Transcriptional Activation Domains Across Plant Species
合作研究:PlantSynBio:跨植物物种转录激活域的识别和设计
- 批准号:
2112056 - 财政年份:2021
- 资助金额:
$ 51.93万 - 项目类别:
Continuing Grant