Quantifying Crop Biomechanics Across Plant Lifespans
量化作物整个生命周期的生物力学
基本信息
- 批准号:2040346
- 负责人:
- 金额:$ 36.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This grant will support research in fundamental crop biomechanics, which will enhance basic scientific knowledge and contribute to the future of agricultural sustainability. In agriculture, unpredictable severe storms can cause significant crop damage. This includes crop loss due to mechanical failure. This mechanical failure is called lodging, and can be the outcome of stem breaking or plant uprooting. Research on crop mechanical failure has been limited by uncontrolled and unpredictable weather patterns. Instead, tools have recently been developed to measure plant mechanical properties and link these measurements to plant resilience and lodging-resistance. This work will quantify plant mechanics over the lifespan of a maize (corn) plant, and determine the cellular signals and architectural features that influence plant mechanics. Understanding how plant mechanics are established provides a foundation for the development of mechanically resilient crops. This will enhance the future of agriculture, which is a significant portion of the U.S. economy. This project addresses the problem of multi-scale signal perception in shaping crop biomechanics across plant lifespans. A major knowledge gap exists in understanding lifespan-related biomechanical adaption and mechanobiological response of crop plants when subject to dynamic forces (e.g., wind). This project tests the hypothesis that lifespan-related changes to plant flexural stiffness are due to cellular-level mechanoreception of dynamic forces interacting with growing plant architectures. To address this hypothesis, the researchers will quantify changes in maize flexural stiffness over lifespans and determine if there is a role of cellular-level mechanosensing and plant architecture in establishing lifespan flexural stiffness. Overall, the research in this project will link multi-scale crop biomechanics and provide a foundation for future crop improvement. This project is jointly funded by the Biomechanics & Mechanobiology program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该赠款将支持基本作物生物力学的研究,这将增强基本科学知识并为农业可持续性的未来做出贡献。 在农业中,不可预测的严重风暴会造成严重的农作物损害。 这包括由于机械故障而导致的作物损失。这种机械故障称为住宿,可能是茎破裂或植物拔起的结果。 关于作物机械故障的研究受到了不受控制和不可预测的天气模式的限制。取而代之的是,最近已经开发了工具来测量植物机械性能,并将这些测量结果与植物的弹性和耐药性联系起来。这项工作将在玉米(玉米)植物的寿命上量化植物力学,并确定影响植物力学的细胞信号和建筑特征。了解植物力学的建立方式为发展机械弹性作物的发展奠定了基础。这将增强农业的未来,这是美国经济的很大一部分。该项目解决了跨植物寿命塑造作物生物力学的多尺度信号感知的问题。 在理解寿命相关的生物力学适应和作物植物的机械生物学反应时,存在一个主要的知识差距,当受动态力(例如,风)约束时。该项目检验了以下假设:寿命相关的植物弯曲刚度的变化是由于细胞水平的动态力与生长植物结构相互作用的机械感受。 为了解决这一假设,研究人员将量化玉米弯曲刚度的变化,并确定细胞级的机械感应和植物结构在建立寿命弯曲僵硬度中是否发挥作用。 总体而言,该项目的研究将链接多尺度的作物生物力学,并为未来的作物改善提供了基础。该项目由生物力学和机械生物学计划共同资助,并启发竞争性研究的既定计划(EPSCOR)。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛影响的评估标准来通过评估来获得支持的。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Maize plants and the brace roots that support them
玉米植株和支撑它们的支撑根
- DOI:10.1111/nph.18489
- 发表时间:2022
- 期刊:
- 影响因子:9.4
- 作者:Sparks, Erin E.
- 通讯作者:Sparks, Erin E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erin Sparks其他文献
Morphological awareness predicts reading comprehension in first grade students
形态意识预测一年级学生的阅读理解能力
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.3
- 作者:
Erin Sparks;J. Metsala - 通讯作者:
J. Metsala
Erin Sparks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erin Sparks', 18)}}的其他基金
Collaborative Research: PlantSynBio: Deciphering the roles of genetic and biochemical redundancy and pathway regulation via refactoring the protective plant cuticle
合作研究:PlantSynBio:通过重构保护性植物角质层破译遗传和生化冗余以及途径调节的作用
- 批准号:
2212800 - 财政年份:2022
- 资助金额:
$ 36.46万 - 项目类别:
Standard Grant
Collaborative Research: Linking brace root development and function in maize
合作研究:将玉米支撑根的发育和功能联系起来
- 批准号:
2109189 - 财政年份:2021
- 资助金额:
$ 36.46万 - 项目类别:
Standard Grant
相似国自然基金
基于ANDSystem与多组学的水稻和小麦胁迫响应分子调控网络及智能作物平台(Smart Crop)的构建
- 批准号:
- 批准年份:2022
- 资助金额:105 万元
- 项目类别:
相似海外基金
PFI-RP: Crop Seed Shaped Pellets for Planting Multi-Species Conservation Habitats with Standard Planting Equipment
PFI-RP:作物种子形状颗粒,用于使用标准种植设备种植多物种保护栖息地
- 批准号:
2345771 - 财政年份:2024
- 资助金额:
$ 36.46万 - 项目类别:
Standard Grant
Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
- 批准号:
2331437 - 财政年份:2024
- 资助金额:
$ 36.46万 - 项目类别:
Standard Grant
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
- 批准号:
2340882 - 财政年份:2024
- 资助金额:
$ 36.46万 - 项目类别:
Continuing Grant
COUSIN: Crop Wild Relatives utilisation and conservation for sustainable agriculture
表弟:作物野生近缘种的利用和保护以实现可持续农业
- 批准号:
10090949 - 财政年份:2024
- 资助金额:
$ 36.46万 - 项目类别:
EU-Funded
Sensing the gap: Expressions of crop stress from molecular to landscape scales
感知差距:从分子到景观尺度的作物胁迫表达
- 批准号:
MR/Y034252/1 - 财政年份:2024
- 资助金额:
$ 36.46万 - 项目类别:
Fellowship