Collaborative Research: EAR-Climate: Physical Controls on CO2 Release from Shale Weathering
合作研究:EAR-气候:页岩风化中二氧化碳释放的物理控制
基本信息
- 批准号:2141520
- 负责人:
- 金额:$ 25.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Shales, commonly found sedimentary rocks, contain a large amount of organic carbon and have been mined for oil, natural gas, and other fossil fuels. Analogous to how the burning of fossil fuels releases carbon dioxide (CO2) to the atmosphere, the natural weathering of shale also releases CO2. While this CO2 release occurs slowly, it has potential to change Earth’s climate over million-year timescales. The scientific community currently lacks understanding about how shale weathering (and associated CO2 release) occurs, and this limits understanding of both past changes in Earth’s climate and predictions of future changes. This project examines how changes in climate and erosion influence the rate of shale weathering via performing a detailed field study in shale rock exposed throughout California. Field work results will be incorporated into a mathematical model that will allow estimates of the rate of CO2 release from shale weathering across the globe. This project will thus both advance understanding of an important natural control on Earth’s climate, and provide a framework to improve predictions of climate change in the future. In addition to these benefits, the project will also provide training for graduate and undergraduate students and project members will engage in K-8 and community outreach to provide geoscience education. Despite previous work on the chemical and biological processes that drive shale weathering, there does not exist a mechanistic understanding of how physical processes modulate CO2 release from shale weathering. This project addresses this knowledge gap by quantifying how variations in physical erosion rate, precipitation rate, and local topography influence shale weathering. The project tests the hypothesis that feedbacks between the supply of carbon during conversion of rock to regolith, chemical kinetics, and topographic controls on weathering zone thickness cause CO2 release from shale weathering to be maximized for areas with modest erosion rates, modest precipitation rates, and high topographic curvature (i.e., ridges). To accomplish this, the researchers will measure the loss of organic carbon in depth-profiles of shale up to 10 m deep, focusing on shales of the Monterey, Rincon, and Cozy Dell formations in the Santa Ynez Mountains, California, where a 6-fold erosion gradient allows assessment of how variation in erosion influences shale weathering. The Santa Ynez Mountain samples will be supplemented with depth profiles of Monterey Shale from Point Reyes National Seashore and Carrizo Plain, California, allowing exploration of shale weathering over a 5-fold gradient in precipitation within the same lithologic formation. The field data will be used to calibrate and modify a reactive-transport model based on physical forcing, thereby providing new opportunities to link geomorphic transport laws with biogeochemical models, and predict CO2 release from shale weathering across a wide range of spatial and temporal scales. Documenting links between physical processes and silicate weathering has led to major advances in the understanding of feedbacks between climate, tectonics, and topography, and documenting such tradeoffs for shale weathering in this project is a logical, yet critical next step to advance understanding of the geologic carbon cycle.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
页岩是常见的沉积岩,含有大量有机碳,可用于开采石油、天然气和其他化石燃料,类似于化石燃料的燃烧向大气中释放二氧化碳 (CO2),即自然风化。页岩的侵蚀也会释放二氧化碳。虽然这种二氧化碳的释放速度很慢,但它有可能在数百万年的时间内改变地球的气候。科学界目前对页岩风化(以及相关的二氧化碳释放)如何发生缺乏了解。这限制了对地球气候过去变化和对未来变化的预测。该项目通过对整个加利福尼亚州暴露的页岩进行详细的现场研究,研究气候和侵蚀的变化如何影响页岩风化的速度。建立一个数学模型,可以估计全球页岩风化产生的二氧化碳释放率,因此该项目将增进对地球气候的重要自然控制的理解,并提供一个框架来改进对未来气候变化的预测。 。在除了这些好处之外,该项目还将为研究生和本科生提供培训,项目成员将参与 K-8 和社区外展活动,以提供地球科学教育。该项目通过量化物理侵蚀率、降水率和当地地形的变化如何影响页岩风化来解决这一知识差距。的岩石转化为风化层过程中的碳、化学动力学和地形对风化带厚度的控制导致页岩风化中的二氧化碳释放在侵蚀率适中、降水率适中和地形曲率高的地区(即山脊)最大化。为此,研究人员将测量深达 10 m 的页岩深度剖面中有机碳的损失,重点关注 Monterey、Rincon 和 Cozy Dell 地层的页岩在加利福尼亚州圣伊内斯山脉,6 倍的侵蚀梯度可以评估侵蚀变化如何影响页岩风化。圣伊内斯山样品将补充来自加利福尼亚州雷耶斯国家海岸和卡里索平原的蒙特利页岩的深度剖面。 ,允许在同一岩性地层内勘探 5 倍降水梯度的页岩风化作用。现场数据将用于校准和修改基于物理强迫的反应输运模型,从而提供新的。将地貌迁移规律与生物地球化学模型联系起来,并在广泛的空间和时间尺度上预测页岩风化产生的二氧化碳释放的机会,记录物理过程和硅酸盐风化之间的联系,使人们在理解气候、构造、气候之间的反馈方面取得了重大进展。和地形,并在该项目中记录页岩风化的此类权衡,是推进对地质碳循环了解的合乎逻辑且关键的下一步。该奖项反映了 NSF 的法定使命,并具有通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Torres其他文献
Overperception of moral outrage in online social networks inflates beliefs about intergroup hostility
在线社交网络中对道德愤怒的过度认知加剧了对群体间敌意的信念
- DOI:
10.1038/s41562-023-01582-0 - 发表时间:
2023-04-10 - 期刊:
- 影响因子:29.9
- 作者:
W. Brady;Killian L. McLoughlin;Mark Torres;Kara F Luo;M. Gendron;M. J. Crockett - 通讯作者:
M. J. Crockett
Mindfulness Meditation Activates Altruism
正念冥想激活利他主义
- DOI:
10.1038/s41598-020-62652-1 - 发表时间:
2020-04-16 - 期刊:
- 影响因子:4.6
- 作者:
Sage K. Iwamoto;Marcus Ale;er;er;Mark Torres;Michaela Irwin;N. Christakis;Akihiro Nishi - 通讯作者:
Akihiro Nishi
Mark Torres的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Torres', 18)}}的其他基金
CAREER: Balancing the global alkalinity cycle by improving models of river chemistry
职业:通过改进河流化学模型平衡全球碱度循环
- 批准号:
2338139 - 财政年份:2025
- 资助金额:
$ 25.82万 - 项目类别:
Continuing Grant
Does Sediment Storage Set the Pace of the Terrestrial Organic Carbon Cycle?
沉积物储存是否决定了陆地有机碳循环的步伐?
- 批准号:
2017106 - 财政年份:2021
- 资助金额:
$ 25.82万 - 项目类别:
Continuing Grant
Collaborative Research: Boron in soil carbonates: developing a quantitative soil CO2 proxy
合作研究:土壤碳酸盐中的硼:开发定量土壤二氧化碳代理
- 批准号:
2050339 - 财政年份:2021
- 资助金额:
$ 25.82万 - 项目类别:
Standard Grant
Does Sediment Storage Set the Pace of the Terrestrial Organic Carbon Cycle?
沉积物储存是否决定了陆地有机碳循环的步伐?
- 批准号:
2017106 - 财政年份:2021
- 资助金额:
$ 25.82万 - 项目类别:
Continuing Grant
相似国自然基金
玉米穗长QTL EAR LENGTH7 (qEL7)的生物学功能与作用机理研究
- 批准号:31871628
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
两种声呐信号蝙蝠耳朵声学特性及听觉转导蛋白表达异同的研究
- 批准号:11704154
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
衔接蛋白AP3D1 Ear结构域的结构与识别机制研究
- 批准号:31200577
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
一种新的给药方式--耳后给药治疗内耳疾病的作用途径及机制研究
- 批准号:81070780
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
优化基因组策略搜寻中国藏族内耳畸形的致病基因及其致聋机制研究
- 批准号:31071099
- 批准年份:2010
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAR Climate: Earth-System Responses to the Penultimate Icehouse-Greenhouse Transition
合作研究:EAR 气候:地球系统对倒数第二个冰室-温室转变的反应
- 批准号:
2317598 - 财政年份:2023
- 资助金额:
$ 25.82万 - 项目类别:
Continuing Grant
Collaborative Research: EAR-Climate: Hydraulic and Hydrologic Regulation of Greenhouse Gas Emissions from Forest Soils and Trees and Detection With Radon As A Novel Tracer
合作研究:EAR-气候:森林土壤和树木温室气体排放的水力和水文调节以及用氡作为新型示踪剂进行检测
- 批准号:
2210783 - 财政年份:2023
- 资助金额:
$ 25.82万 - 项目类别:
Standard Grant
Collaborative Research: EAR Climate: Earth-System Responses to the Penultimate Icehouse-Greenhouse Transition
合作研究:EAR 气候:地球系统对倒数第二个冰室-温室转变的反应
- 批准号:
2317601 - 财政年份:2023
- 资助金额:
$ 25.82万 - 项目类别:
Continuing Grant
Collaborative Research: EAR Climate: Earth-System Responses to the Penultimate Icehouse-Greenhouse Transition
合作研究:EAR 气候:地球系统对倒数第二个冰室-温室转变的反应
- 批准号:
2317599 - 财政年份:2023
- 资助金额:
$ 25.82万 - 项目类别:
Standard Grant
Collaborative Research: EAR Climate: Earth-System Responses to the Penultimate Icehouse-Greenhouse Transition
合作研究:EAR 气候:地球系统对倒数第二个冰室-温室转变的反应
- 批准号:
2317600 - 财政年份:2023
- 资助金额:
$ 25.82万 - 项目类别:
Standard Grant