NSF-DFG Echem: Electrochemically enhanced low-temperature catalytic ammonia synthesis
NSF-DFG Echem:电化学增强低温催化氨合成
基本信息
- 批准号:2140971
- 负责人:
- 金额:$ 37.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As the nation and the world move toward carbon-free energy economies, ammonia will likely play significant roles as a hydrogen carrier. Today, essentially all ammonia is produced in high pressure Haber-Bosch plants at very large scale. There is a growing need for smaller scale, geographically distributed, ammonia synthesis using renewable resources. However, because of inherent thermodynamic and kinetic limitations, typical catalyst-based thermal processes (e.g., Haber-Bosch) are not economic at smaller scale. The present project seeks to enable distributed ammonia synthesis using electrochemical interactions that significantly reduce activation barriers. The research relies on the combined, complementary, and unique expertise of the partners in the context of materials synthesis, characterization and process demonstration (KIT) and physically based modeling of the electrochemistry, charged-defect transport, and catalysis (CSM).This joint project addresses significant scientific challenges in transitioning to environmentally friendly ammonia production as an energy carrier and commodity chemical. The project’s objective is to develop and demonstrate electrochemical enhancement that enables low-temperature and low-pressure ammonia synthesis. Nanophase Ru is dispersed on a proton-conducting BCZY support (BaCe1-x-yZrxYyO3-δ). Directly polarizing the catalyst structure with an electric field decreases the kinetically limiting barrier for N2 activation. Although the proposed research is scientifically fundamental, it has excellent technology potential for cost-effective distributed production of ammonia. The research focuses on postulating, modeling, and validating proposed chemical behaviors. The electrical field is expected to reduce rate-limiting N2 dissociation barriers via two synergistic mechanisms:1. Electrical fields affect the proton-conducting BCZY support, enabling H2 dissociation to form protons that can activate gas-phase N2, directly forming desired surface adsorbates such as NH on the BCZY support.2. Fields in the range of 0.1 to1.0 V/Å on dispersed nano-Ru also reduce the nitrogen activation barrier. The energy barrier for nitrogen activation Ru varies between 30-42 kJ mol-1. Based on our validated reaction mechanisms for Ba-promoted Ru/YSZ, simulations show that reducing the N2 dissociation energy by 10 kJ mol-1 will increase the ammonia formation rate by an order of magnitude.This research was funded under the NSF-DFG Lead Agency Activity in Electrosynthesis and Electrocatalysis (NSF-DFG EChem) opportunity NSF 20-578.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着国家和世界走向无碳能源经济,氨可能会作为氢载体发挥重要作用,今天,基本上所有氨都是在哈伯-博世高压工厂大规模生产的,对氨的需求不断增长。然而,由于固有的热力学和动力学限制,典型的基于催化剂的热工艺(例如哈伯-博世)在较小规模下并不经济。该研究依赖于合作伙伴在材料合成、显着表征和过程演示 (KIT) 以及电化学、带电物理建模方面的综合、互补和独特的专业知识。缺陷传输和催化(CSM)。该联合项目解决了向环境友好型氨生产过渡作为能源载体和商品化学品的重大科学挑战。该项目的目标是开发和演示能够实现低温和大宗化学品的电化学增强。低压氨合成。纳米相 Ru 分散在质子传导 BCZY 载体 (BaCe1-x-yZrxYyO3-δ) 上,用电场直接极化催化剂结构会降低 N2 活化的动力学限制势垒。从科学的角度来看,它具有经济高效的分布式氨生产的巨大技术潜力。该研究的重点是假设、建模和验证所提出的化学行为。通过两种协同机制减少 N2 解离速率限制:电场影响质子传导 BCZY 载体,使 H2 解离形成可以激活气相 N2 的质子,直接在 BCZY 载体上形成所需的表面吸附物,例如 NH。 .2. 分散的纳米 Ru 上 0.1 至 1.0 V/Å 范围内的场也降低了氮活化势垒。 30-42 kJ mol-1。基于我们验证的 Ba 促进的 Ru/YSZ 反应机制,模拟表明,将 N2 解离能降低 10 kJ mol-1 将使氨的形成速率提高一个数量级。这项研究获得 NSF-DFG 电合成和电催化牵头机构活动 (NSF-DFG EChem) 机会 NSF 20-578 的资助。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Kee其他文献
System studies and understanding durability: general discussion
- DOI:
10.1039/c5fd90075a - 发表时间:
2015-10 - 期刊:
- 影响因子:3.4
- 作者:
Raymond Gorte;Ian Metcalfe;John Vohs;Sune Dalgaard Ebbesen;Christopher Graves;San Ping Jiang;Dehua Dong;Tatsumi Ishihara;Rachael Elder;Beatriz Molero-Sánchez;Denis Cumming;Lisa Kleiminger;Steven McIntosh;Göran Lindbergh;John Bøgild Hansen;Viola Birss;Robert Kee;John Irvine;Bilge Yildiz;Joseph Hartvigsen;Mogens Mogensen;Marc Torrell;Shanwen Tao;Andreas Egger;Scott Barnett;Chen Xinbing - 通讯作者:
Chen Xinbing
Three-dimensional quantification of composition and electrostatic potential at individual grain boundaries in doped ceria
- DOI:
10.1039/c5ta10064j - 发表时间:
2016-03 - 期刊:
- 影响因子:11.9
- 作者:
David R. Diercks;Jianhua Tong;Huayang Zhu;Robert Kee;George Baure;Juan C. Nino;Ryan O'Hayre;Brian P. Gorman - 通讯作者:
Brian P. Gorman
Materials development: general discussion
- DOI:
10.1039/c5fd90074c - 发表时间:
2015-10 - 期刊:
- 影响因子:3.4
- 作者:
Raymond Gorte;John Vohs;Theis L. Skafte;Robert Kee;John Varcoe;Ian Metcalfe;Sune Dalgaard Ebbesen;Guntae Kim;Dehua Dong;San Ping Jiang;Ming Li;Tatsumi Ishihara;John Bøgild Hansen;Beatriz Molero-Sanchez;Steven McIntosh;Helena Téllez;Alex Morata;Viola Birss;Xiangling Yue;John Druce;Joseph Hartvigsen;Ann Call;John Irvine;Tae Ho Shin;Mogens Mogensen;Chengsheng Ni;Marc Torrell;Christopher Graves;Bilge Yildiz - 通讯作者:
Bilge Yildiz
Fundamental electrochemistry: general discussion
- DOI:
10.1039/c5fd90073e - 发表时间:
2015-10 - 期刊:
- 影响因子:3.4
- 作者:
Mogens Mogensen;Raymond Gorte;John Vohs;Ian Metcalfe;Sune Dalgaard Ebbesen;Steven McIntosh;Scott Barnett;San Ping Jiang;Ming Li;Tatsumi Ishihara;Rotraut Merkle;John Bøgild Hansen;John Druce;Helena Téllez;Göran Lindbergh;Viola Birss;Xiangling Yue;Joseph Hartvigsen;Christopher Graves;John Irvine;Bilge Yildiz;Robert Kee;Denis Cumming - 通讯作者:
Denis Cumming
Robert Kee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于光纤激光的DFG红外频率梳光源关键问题的研究
- 批准号:61250017
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
基于可编程光纤激光器与有机非线性晶体的光纤太赫兹融合系统研究
- 批准号:61107087
- 批准年份:2011
- 资助金额:30.0 万元
- 项目类别:青年科学基金项目
基于DFG-out型VEGFR/FGFR双重抑制剂的设计、合成及血管生成抑制活性的研究
- 批准号:21172265
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
可调谐单频中红外激光器和生物气体同位素的检测研究
- 批准号:60878063
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
40Gbit/s高速全光码型转换的新机理和新技术研究
- 批准号:60577006
- 批准年份:2005
- 资助金额:7.0 万元
- 项目类别:面上项目
相似海外基金
NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
- 批准号:
2346885 - 财政年份:2023
- 资助金额:
$ 37.56万 - 项目类别:
Standard Grant
NSF-DFG Echem: CAS: Electrochemical Pyrrolidone Synthesis: An Integrated Experimental and Theoretical Investigation of the Electrochemical Amination of Levulinic Acid (ElectroPyr)
NSF-DFG Echem:CAS:电化学吡咯烷酮合成:乙酰丙酸 (ElectroPyr) 电化学胺化的综合实验和理论研究
- 批准号:
2140374 - 财政年份:2022
- 资助金额:
$ 37.56万 - 项目类别:
Standard Grant
NSF-DFG Echem: CAS: Hydrofunctionalization of Alkenes by non-Redox Paired Electrocatalysis
NSF-DFG Echem:CAS:通过非氧化还原配对电催化对烯烃进行氢官能化
- 批准号:
2055451 - 财政年份:2021
- 资助金额:
$ 37.56万 - 项目类别:
Standard Grant
NSF-DFG Echem: Elucidating Surface Structure Contribution of Facets, Steps and Kinks in Electrocatalysis of the Oxygen Evolution and Reduction Reactions
NSF-DFG Echem:阐明面、台阶和扭结在析氧和还原反应电催化中的表面结构贡献
- 批准号:
2139971 - 财政年份:2021
- 资助金额:
$ 37.56万 - 项目类别:
Standard Grant
NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
- 批准号:
2140211 - 财政年份:2021
- 资助金额:
$ 37.56万 - 项目类别:
Standard Grant