SHF: Small: Collaborative Research: Understanding and Evolving Search-based Software Improvement
SHF:小型:协作研究:理解和发展基于搜索的软件改进
基本信息
- 批准号:1908633
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Software is pervasive, supporting entertainment, finances, health care, travel, and social interactions. Latent software glitches, or bugs, are costly to diagnose and repair. Today, most software bugs are repaired by highly-trained software engineers, but it is uneconomical to repair all such bugs manually, and even for important security-critical problems there can be long delays between bug discoveries and fixes. This project develops improved methods for automatically finding repairs for software bugs, thus addressing a key component of the high cost of software maintenance. Techniques for automated software improvement have matured over the pastdecade, and industry has begun adopting the more successful approaches. Despite these successes, current methods can repair only a fraction of presented bugs. The project focuses on extending the range of existing techniques, which search for small changes to the buggy program that will repair the error. Current approaches use search that is analogous to "looking for one's keys under a streetlamp": they search where it is easy, not where it would be most effective. By leveraging insights from evolutionarybiology and on-line learning methods, new algorithms will be developed that explore more aggressively, thus finding more repairs for more complex bugs more often and more consistently. In addition to repairing bugs, the new algorithms will be tested on other aspects of software improvement, for instance, reducing how much energy a program uses when it executes.All search algorithms face a tradeoff between exploration and exploitation, balancing continued refinement of current good solutions against looking for even better solutions farther afield. Current methods for search-based software improvement overemphasize exploitation, limiting searches to only one or two changes to the original program. To search more aggressively, the project focuses on the space of "neutral" or "safe" program edits, adapting the concept of the space of neutral mutations in biology, where there is extensive theory and analysis to describe its topology and account for negative interactions among mutations. The project: (1) adapts these analyses to the software domain, (2) uses them to design new program-improvement algorithms, and (3) tests the algorithms quantitatively using three important software-improvement domains: software repair, energy optimization, and optimizing speed/accuracy tradeoffs. The resulting algorithm is a radical departure from existing search-based methods, because it eliminates two key components: selection of the highest-performing samples from a population and recombination of high-performing partial solutions. By focusing on exploration, and by quantifying important properties of the search space, the project complements work by other researchers to improve mutation operators, fault localization, and fitness functions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
软件无处不在,支持娱乐,财务,医疗保健,旅行和社交互动。潜在的软件故障或错误在诊断和维修方面成本高昂。如今,大多数软件错误是由受过良好训练的软件工程师修复的,但是手动修复所有此类错误是不经济的,即使对于重要的关键安全问题,也可能在错误发现和修复程序之间延迟延迟。该项目开发了改进的方法,以自动寻找软件错误的维修,从而解决了高度维护成本的关键组成部分。自动化软件改进的技术在过去的十年中已经成熟,行业已经开始采用更成功的方法。尽管取得了这些成功,但当前的方法只能修复一小部分提出的错误。该项目着重于扩展现有技术的范围,该技术搜索将修复错误的越野车计划更改。当前的方法使用搜索类似于“在路灯下寻找一个人的钥匙”类似的搜索:他们搜索它很容易,而不是最有效的地方。通过利用进化生物学和在线学习方法的见解,将开发出更为积极地探索的新算法,从而更加频繁,更稳定地为更复杂的错误找到更多的维修。除了修复错误外,新算法还将在软件改进的其他方面进行测试,例如,减少程序执行时使用的能量。所有搜索算法都面临着探索和剥削之间的权衡,平衡持续的良好解决方案的良好解决方案与当前的良好解决方案进行了改进,以防止在法律上寻找更好的解决方案。基于搜索的软件改进的当前方法过于强调开发,将搜索限制为原始程序的一个或两个更改。为了更积极地搜索,该项目着重于“中性”或“安全”程序编辑的空间,调整了生物学中中性突变空间的概念,在该空间中,有广泛的理论和分析来描述其拓扑并说明突变之间的负相互作用。项目:(1)将这些分析调整到软件域,(2)使用它们来设计新的程序改进算法,并且(3)使用三个重要的软件改进域进行定量测试算法:软件维修,能量维修,能量优化,优化和优化速度/准确性折衷。由此产生的算法是与现有的基于搜索的方法的根本偏离,因为它消除了两个关键组成部分:从人群中选择表现最高的样本以及重组高性能的部分解决方案。通过专注于探索,并量化搜索空间的重要特性,该项目补充了其他研究人员的工作,以改善突变操作员,故障定位和健身功能。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来支持的。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MA-ABC: a memetic algorithm optimizing attractiveness, balance, and cost for capacitated Arc routing problems
- DOI:10.1145/3449639.3459268
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Muhilan Ramamoorthy;S. Forrest;V. Syrotiuk
- 通讯作者:Muhilan Ramamoorthy;S. Forrest;V. Syrotiuk
Improving source-code representations to enhance search-based software repair
改进源代码表示以增强基于搜索的软件修复
- DOI:10.1145/3512290.3528864
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Reiter, Pemma;Espinoza, Antonio M.;Doupé, Adam;Wang, Ruoyu;Weimer, Westley;Forrest, Stephanie
- 通讯作者:Forrest, Stephanie
Synthesizing Legacy String Code for FPGAs Using Bounded Automata Learning
使用有界自动机学习合成 FPGA 的遗留字符串代码
- DOI:10.1109/mm.2022.3178037
- 发表时间:2022
- 期刊:
- 影响因子:3.6
- 作者:Angstadt, Kevin;Tracy, Tommy;Skadron, Kevin;Jeannin, Jean-Baptiste;Weimer, Westley
- 通讯作者:Weimer, Westley
Multiplicative Weights Algorithms for Parallel Automated Software Repair
用于并行自动软件修复的乘法权重算法
- DOI:10.1109/ipdps49936.2021.00107
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Renzullo, Joseph;Weimer, Westley;Forrest, Stephanie
- 通讯作者:Forrest, Stephanie
CirFix: automatically repairing defects in hardware design code
- DOI:10.1145/3503222.3507763
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Hammad Ahmad;Yu Huang;Westley Weimer
- 通讯作者:Hammad Ahmad;Yu Huang;Westley Weimer
共 7 条
- 1
- 2
Westley Weimer其他文献
Genetic Improvement @ ICSE 2020
遗传改良 @ ICSE 2020
- DOI:10.1145/3417564.341757510.1145/3417564.3417575
- 发表时间:20202020
- 期刊:
- 影响因子:0
- 作者:W. Langdon;Westley Weimer;J. Petke;Erik M. Fredericks;Seongmin Lee;E. Winter;Michail Basios;Myra B. Cohen;Aymeric Blot;Markus Wagner;Bobby R. Bruce;S. Yoo;Simos Gerasimou;Oliver Krauss;Yu Huang;Michael C. GertenW. Langdon;Westley Weimer;J. Petke;Erik M. Fredericks;Seongmin Lee;E. Winter;Michail Basios;Myra B. Cohen;Aymeric Blot;Markus Wagner;Bobby R. Bruce;S. Yoo;Simos Gerasimou;Oliver Krauss;Yu Huang;Michael C. Gerten
- 通讯作者:Michael C. GertenMichael C. Gerten
Biases and differences in code review using medical imaging and eye-tracking: genders, humans, and machines
使用医学成像和眼球追踪进行代码审查的偏差和差异:性别、人类和机器
- DOI:
- 发表时间:20202020
- 期刊:
- 影响因子:0
- 作者:Yu Huang;Kevin Leach;Zohreh Sharafi;Nicholas McKay;Tyler Santander;Westley WeimerYu Huang;Kevin Leach;Zohreh Sharafi;Nicholas McKay;Tyler Santander;Westley Weimer
- 通讯作者:Westley WeimerWestley Weimer
Speeding Up Dataflow Analysis Using Flow-Insensitive Pointer Analysis
使用流不敏感指针分析加速数据流分析
- DOI:
- 发表时间:20022002
- 期刊:
- 影响因子:0
- 作者:Stephen Adams;T. Ball;Manuvir Das;Sorin Lerner;S. Rajamani;Mark Seigle;Westley WeimerStephen Adams;T. Ball;Manuvir Das;Sorin Lerner;S. Rajamani;Mark Seigle;Westley Weimer
- 通讯作者:Westley WeimerWestley Weimer
Relating Reading, Visualization, and Coding for New Programmers: A Neuroimaging Study
新程序员的阅读、可视化和编码相关性:一项神经影像学研究
- DOI:10.1109/icse43902.2021.0006210.1109/icse43902.2021.00062
- 发表时间:20212021
- 期刊:
- 影响因子:0
- 作者:Madeline Endres;Z. Karas;Xiaosu Hu;I. Kovelman;Westley WeimerMadeline Endres;Z. Karas;Xiaosu Hu;I. Kovelman;Westley Weimer
- 通讯作者:Westley WeimerWestley Weimer
Selective Symbolic Type-Guided Checkpointing and Restoration for Autonomous Vehicle Repair
用于自主车辆维修的选择性符号类型引导检查点和恢复
- DOI:10.1145/3387940.339220110.1145/3387940.3392201
- 发表时间:20202020
- 期刊:
- 影响因子:0
- 作者:Yu Huang;K. Angstadt;Kevin Leach;Westley WeimerYu Huang;K. Angstadt;Kevin Leach;Westley Weimer
- 通讯作者:Westley WeimerWestley Weimer
共 47 条
- 1
- 2
- 3
- 4
- 5
- 6
- 10
Westley Weimer的其他基金
Collaborative Research: SHF: Medium: Near-Hardware Program Repair and Optimization
合作研究:SHF:中:近硬件程序修复和优化
- 批准号:22117492211749
- 财政年份:2022
- 资助金额:$ 25万$ 25万
- 项目类别:Standard GrantStandard Grant
SHF: Medium: Collaborative Research: Program Analytics: Using Trace Data for Localization, Explanation and Synthesis
SHF:媒介:协作研究:程序分析:使用跟踪数据进行本地化、解释和综合
- 批准号:17636741763674
- 财政年份:2018
- 资助金额:$ 25万$ 25万
- 项目类别:Continuing GrantContinuing Grant
Travel Grant to ESEC/FSE Doctoral Symposia
ESEC/FSE 博士研讨会旅费资助
- 批准号:11383061138306
- 财政年份:2011
- 资助金额:$ 25万$ 25万
- 项目类别:Standard GrantStandard Grant
SHF: Small: Synthesizing Human-Readable Documentation
SHF:小型:综合人类可读的文档
- 批准号:11162891116289
- 财政年份:2011
- 资助金额:$ 25万$ 25万
- 项目类别:Standard GrantStandard Grant
CAREER: Scalable and Trustworthy Automatic Program Repair
职业:可扩展且值得信赖的自动程序修复
- 批准号:09540240954024
- 财政年份:2010
- 资助金额:$ 25万$ 25万
- 项目类别:Continuing GrantContinuing Grant
SHF: Medium: Collaborative Research: Fixing Real Bugs in Real Programs Using Evolutionary Algorithms
SHF:媒介:协作研究:使用进化算法修复实际程序中的实际错误
- 批准号:09053730905373
- 财政年份:2009
- 资助金额:$ 25万$ 25万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
- 批准号:61661005
- 批准年份:2016
- 资助金额:30.0 万元
- 项目类别:地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
- 批准号:61301143
- 批准年份:2013
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
- 批准号:81072465
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
基于小世界网络的传感器网络研究
- 批准号:60472059
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:23313022331302
- 财政年份:2024
- 资助金额:$ 25万$ 25万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:23313012331301
- 财政年份:2024
- 资助金额:$ 25万$ 25万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:24123572412357
- 财政年份:2024
- 资助金额:$ 25万$ 25万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: SHF: Small: Technical Debt Management in Dynamic and Distributed Systems
合作研究:SHF:小型:动态和分布式系统中的技术债务管理
- 批准号:22327202232720
- 财政年份:2023
- 资助金额:$ 25万$ 25万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
- 批准号:23268952326895
- 财政年份:2023
- 资助金额:$ 25万$ 25万
- 项目类别:Standard GrantStandard Grant