Collaborative Research: RI: Medium: Learning Compositional Implicit Representations for 3D Scene Understanding
合作研究:RI:媒介:学习 3D 场景理解的组合隐式表示
基本信息
- 批准号:2211259
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Scene understanding systems take visual inputs, like images or videos, and reconstruct and interpret the underlying scene in terms of 3D structure, objects like cars and people, and other scene properties. Such systems are crucial in applications in computer vision, computer graphics, and robotics, including in self-driving cars. To represent the 3D world as observed from the input imagery, such systems use mathematical models, and in recent years neural networks have been very popular as the models used in such systems, due to their expressiveness and ability to capture fine details. However, current neural network-based scene representations are only good at modeling the specific conditions under which a scene was observed, and cannot generalize to new scenarios, limiting their use in many applications. For example, if a self-driving car is trained to model scenes using only images from sunny days, the car’s perception system might break down on rainy or snowy days. This project aims to introduce new scene modeling techniques that will enable machines to perceive and reconstruct 3D scenes in a more generalizable way. The investigators will integrate findings from this research into course development and student advising, and partner with educational and non-profit organizations to teach AI, vision, and graphics to underrepresented students. In this project, investigators will explore new methods that will make representations capable of encoding more structure (e.g., light field) and root them in physics. Designing such representations requires knowledge from AI, computer vision, and computer graphics. The key innovations include a new class of scene representations that aims to bridge the ability of implicit neural representations to capture scene details with that of physical representations to model scene structure; new methods that infer the representation from raw images and videos with new parametrizations to enable data-efficient, self-supervised learning; and new methods that leverage the representation for downstream computer vision and graphics tasks, such as interactive design and scene synthesis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Scene System进行视觉输入,例如图像或视频,并根据3D结构来重建和解释基础场景,包括自动驾驶的赛车,以代表3D世界,因为从输入图像中观察到的年度神经网络在此类系统中使用的Tels均受欢迎。基于场景的代表仅擅长于观察到一个场景的特定条件,并且无法推广到新的场景,例如在许多应用程序中使用它们。汽车的感知系统可能会在下雨天或下雪的日子里崩溃。组织和非营利组织教授AI,并为登记的学生提供图形,这将使能够编码更多的结构(例如,灯场)并扎根于物理学。图形。关键创新包括一个新的场景表示,旨在用thysical catentations桥接神经捕获的能力,以模拟结构通过使用基金会的知识分子优点和更广泛的影响标准评估,学习了下游计算机视觉和图形任务的代表。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Noah Snavely其他文献
Visual Chirality—Supplemental Material: Commutativity and the Chirality of Imaging Processes
视觉手性 - 补充材料:交换性和成像过程的手性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Zhiqiu Lin;Jin Sun;A. Davis;Noah Snavely - 通讯作者:
Noah Snavely
Unpredication, unscheduling, unspeculation: reverse engineering Itanium executables
非预测、非调度、非推测:逆向工程 Itanium 可执行文件
- DOI:
10.1109/tse.2005.27 - 发表时间:
2005 - 期刊:
- 影响因子:7.4
- 作者:
Noah Snavely;S. Debray;G. Andrews - 通讯作者:
G. Andrews
Image description with a goal: Building efficient discriminating expressions for images
有目标的图像描述:构建有效的图像判别表达式
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Amir Sadovnik;Yi;Noah Snavely;S. Edelman;Tsuhan Chen - 通讯作者:
Tsuhan Chen
Photo Tourism : Exploring image collections in 3D
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:6.2
- 作者:
Noah Snavely - 通讯作者:
Noah Snavely
Noah Snavely的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Noah Snavely', 18)}}的其他基金
RI: Small: Understanding and Synthesizing People in 3D Scenes
RI:小:理解和合成 3D 场景中的人物
- 批准号:
2008313 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Sensing the World with the Distributed Camera
职业:用分布式相机感知世界
- 批准号:
1149393 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CGV: Large: Collaborative Research: Analyzing Images Through Time
CGV:大型:协作研究:随时间分析图像
- 批准号:
1111534 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: Reconstructing Cities from Photographs
RI:媒介:合作研究:从照片重建城市
- 批准号:
0964027 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
跨膜蛋白LRP5胞外域调控膜受体TβRI促钛表面BMSCs归巢、分化的研究
- 批准号:82301120
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Dectin-2通过促进FcεRI聚集和肥大细胞活化加剧哮喘发作的机制研究
- 批准号:82300022
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
藏药甘肃蚤缀β-咔啉生物碱类TβRI抑制剂的发现及其抗肺纤维化作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TβRI的UFM化修饰调控TGF-β信号通路和乳腺癌转移的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
AKAP3通过其Dual和RI结构域整合多重信号通路调控精子活力和男性育性的机理研究
- 批准号:82171602
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
- 批准号:
2313131 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant