RI: Small: Understanding and Synthesizing People in 3D Scenes

RI:小:理解和合成 3D 场景中的人物

基本信息

  • 批准号:
    2008313
  • 负责人:
  • 金额:
    $ 49.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

This project advances fundamental research into understanding people in images, and how they interact with their environment. This goal is important because people are crucial in many real-world applications that involve imagery. For example, vehicles and robots should perceive people, predict their behavior, and operate safely around them. In the realm of computer graphics, algorithms that generate content for movies and games should depict people with realistic appearance and who interact with their environment in realistic ways. Developing a computational understanding of people sufficient for such applications will involve, crucially, understanding the connection between people and the scenes they inhabit. For instance, in a typical street scene, people will tend to appear walking on sidewalks or crosswalks -- but if it suddenly starts raining, they might look and act differently, for instance, by carrying umbrellas, hurrying for shelter, etc. This project seeks to build such a computational understanding of people in scenes via new human-centric methods for perceiving the world. The research will also be coupled with educational activities, including efforts to broaden participation in computing.The technical goals of the project fall into two main thrusts corresponding to a computer vision and a computer graphics goal: (1) human-centric understanding of images, and (2) realistic synthesis of people into images. Both of these goals will be driven by new machine learning methods that will answer the following series of questions: given an image of a scene, where might a person appear, what would they be doing, and how would they look? These questions are distinct from the typical computer vision task of identifying where humans actually are in an image, and instead involve reasoning about where they could be. This reasoning is highly dependent on the scene depicted in the image -- are there benches, is it raining, etc. -- and also on the 3D geometry of the scene -- e.g., whether a particular surface is horizontal or vertical. Hence, the project will explore scene- and 3D-aware learning of people and their interactions with the world.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目推进了理解图像中的人以及他们如何与环境互动的基础研究。这个目标很重要,因为人在许多涉及图像的现实应用中至关重要。例如,车辆和机器人应该感知人类,预测他们的行为,并在他们周围安全运行。在计算机图形学领域,为电影和游戏生成内容的算法应该描绘具有真实外观的人物,并以真实的方式与环境互动。至关重要的是,要对人类进行足够的计算理解,以适应此类应用,就需要理解人类与其所居住的场景之间的联系。例如,在典型的街道场景中,人们往往会出现在人行道或人行横道上行走——但如果突然下雨,他们的表情和行为可能会有所不同,例如携带雨伞、匆忙寻找避难所等。这个项目寻求通过新的以人为中心的感知世界的方法来建立对场景中的人的计算理解。该研究还将与教育活动相结合,包括努力扩大对计算的参与。该项目的技术目标分为与计算机视觉和计算机图形目标相对应的两个主要目标:(1)以人为中心的图像理解, (2)将人物逼真地合成为图像。这两个目标都将由新的机器学习方法驱动,这些方法将回答以下一系列问题:给定一个场景图像,一个人可能出现在哪里,他们会做什么,以及他们看起来如何?这些问题与识别人类在图像中实际位置的典型计算机视觉任务不同,而是涉及推理他们可能在哪里。这种推理高度依赖于图像中描绘的场景(是否有长凳、是否下雨等)以及场景的 3D 几何形状(例如,特定表面是水平还是垂直)。因此,该项目将探索人们的场景和 3D 感知学习及其与世界的互动。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
IRON: Inverse Rendering by Optimizing Neural SDFs and Materials from Photometric Images
PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Material Editing and Relighting
Extreme Rotation Estimation using Dense Correlation Volumes
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Noah Snavely其他文献

Visual Chirality—Supplemental Material: Commutativity and the Chirality of Imaging Processes
视觉手性 - 补充材料:交换性和成像过程的手性
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiqiu Lin;Jin Sun;A. Davis;Noah Snavely
  • 通讯作者:
    Noah Snavely
Unpredication, unscheduling, unspeculation: reverse engineering Itanium executables
非预测、非调度、非推测:逆向工程 Itanium 可执行文件
Image description with a goal: Building efficient discriminating expressions for images
有目标的图像描述:构建有效的图像判别表达式
Photo Tourism : Exploring image collections in 3D
Visual Texture
视觉质感

Noah Snavely的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Noah Snavely', 18)}}的其他基金

Collaborative Research: RI: Medium: Learning Compositional Implicit Representations for 3D Scene Understanding
合作研究:RI:媒介:学习 3D 场景理解的组合隐式表示
  • 批准号:
    2211259
  • 财政年份:
    2022
  • 资助金额:
    $ 49.86万
  • 项目类别:
    Standard Grant
CAREER: Sensing the World with the Distributed Camera
职业:用分布式相机感知世界
  • 批准号:
    1149393
  • 财政年份:
    2012
  • 资助金额:
    $ 49.86万
  • 项目类别:
    Standard Grant
CGV: Large: Collaborative Research: Analyzing Images Through Time
CGV:大型:协作研究:随时间分析图像
  • 批准号:
    1111534
  • 财政年份:
    2011
  • 资助金额:
    $ 49.86万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research: Reconstructing Cities from Photographs
RI:媒介:合作研究:从照片重建城市
  • 批准号:
    0964027
  • 财政年份:
    2010
  • 资助金额:
    $ 49.86万
  • 项目类别:
    Continuing Grant

相似国自然基金

单细胞分辨率下的石杉碱甲介导小胶质细胞极化表型抗缺血性脑卒中的机制研究
  • 批准号:
    82304883
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
  • 批准号:
    32372613
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
诊疗一体化PS-Hc@MB协同训练介导脑小血管病康复的作用及机制研究
  • 批准号:
    82372561
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
非小细胞肺癌MECOM/HBB通路介导血红素代谢异常并抑制肿瘤起始细胞铁死亡的机制研究
  • 批准号:
    82373082
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FATP2/HILPDA/SLC7A11轴介导肿瘤相关中性粒细胞脂代谢重编程影响非小细胞肺癌放疗免疫的作用和机制研究
  • 批准号:
    82373304
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

RI: Small: Understanding Hand Interaction In The Jumble of Internet Videos
RI:小:在混乱的互联网视频中理解手部交互
  • 批准号:
    2426592
  • 财政年份:
    2024
  • 资助金额:
    $ 49.86万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 49.86万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232300
  • 财政年份:
    2023
  • 资助金额:
    $ 49.86万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232299
  • 财政年份:
    2023
  • 资助金额:
    $ 49.86万
  • 项目类别:
    Standard Grant
RI: Small: Toward Efficient and Robust Dynamic Scene Understanding Based on Visual Correspondences
RI:小:基于视觉对应的高效、鲁棒的动态场景理解
  • 批准号:
    2310254
  • 财政年份:
    2023
  • 资助金额:
    $ 49.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了