RESEARCH-PGR: QTL Analyses Identify Genetic Components Regulating the Interactions between Plants, Pathogens and the Environment in the Face of Climate Change

研究-PGR:QTL 分析识别在气候变化下调节植物、病原体和环境之间相互作用的遗传成分

基本信息

  • 批准号:
    2210293
  • 负责人:
  • 金额:
    $ 179.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

An organism’s ability to respond to its environment is fundamental to its survival. When the organism of interest is involved in a host-pathogen interaction, “the environment” becomes complex, including includes not only external forces, but also the conditions imposed by the interacting partner. There are also two genomes at play, each of which affects the behavior of both organisms. In addition, external environmental forces impose additional pressures, and each genome can affect how both partners respond. This project examines the role the host genome plays in altering behavior of both host and pathogen under environmental stress. It leverages an agriculturally relevant system, nematode infection of tomato. Parasitic nematodes are responsible for around $125 billion in annual crop loss worldwide with yield loss upwards of 80% for tomato. Limited control options are available, and the situation is exacerbated by an emerging concern in agriculture: the effect of warming nighttime temperatures (WNT). This unprecedented trend is causing critical challenges to crops. Broader, future impacts of this work include the development of novel approaches to examine host-pathogen interactions and how they are affected by external conditions. This then will lead to the identification of plant lines that are more resilient to both abiotic and biotic stresses. Importantly, by elucidating the molecular biology behind the parasite response to those plants under WNT, this study will go beyond merely identifying relevant host genes to contribute new insight into the mechanisms by which those genes alter the nematode biology. Understanding the nematode in addition to the plant paves the way towards targeting the parasite directly for crop improvement.The goals of this project align with an overarching concern in genetics: to identify DNA variants that influence how individuals respond to their environment. Here, the concept of “individuals” and “environment” are complex. DNA variants in one species will be identified that, in tandem with external environmental conditions, affect how another, interacting species responds. The environmental context considered is warming nighttime temperatures (WNT), a critical, highly relevant, and current environmental concern. Genetically variable tomato plants derived from a cross between a cultivated line and a wild line will be infected with a genetically homogeneous strain of parasitic nematodes. A control experiment will also be performed with uninfected plants. These early, late, and control experiments will be carried out under two temperature regimes: normal nighttime temperatures and WNT. For each treatment combination, phenotypes related to infection and plant health will be collected, along with gene expression data for both plant and nematode. With this design, connections between DNA variants in the tomato genome and molecular responses of the nematode as well as the plant will be made, and the effect of WNT on these connections will be uncovered through via a series of genetic mapping experiments. Leveraging the connections identified in this way, more complex genotype-expression-phenotype pathways can subsequently be inferred, providing a detailed view of the molecular biology of the plant-parasite interaction response to WNT. It will also pinpoint promising candidate genes, which will be functionally validated. All project outcomes will be made publicly accessible through publications and deposition of data and resources in long-term repositories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
有机体对环境做出反应的能力是其生存的基础。当感兴趣的生物与宿主病原体相互作用涉及时,“环境”变得复杂,不仅包括外力,而且还包括相互作用伴侣施加的条件。还有两个基因组在起作用,每个基因组都会影响两种生物的行为。此外,外部环境力量施加了额外的压力,每个基因组都会影响双方的反应方式。该项目研究了宿主基因组在环境压力下改变宿主和病原体行为的作用。它利用了汇总的相关系统,即番茄的线虫感染。寄生线虫在全球范围内造成约1,250亿美元的农作物损失,番茄的收益率损失高达80%。可以使用有限的控制选择,并且由于农业的新兴关注:变暖夜间温度(WNT)的影响加剧了情况。这种前所未有的趋势正在给农作物带来关键的挑战。这项工作的更广泛的未来影响包括开发新的方法来检查宿主 - 病原体相互作用以及它们如何受到外部条件的影响。然后,这将导致鉴定植物线对非生物和生物胁迫更具弹性。重要的是,通过阐明寄生虫对Wnt下植物的反应背后的分子生物学,本研究将不仅仅是识别相关的宿主基因,从而为这些基因改变线虫生物学的机制有了新的见解。除了植物之外,了解线虫还为直接靶向寄生虫的靶向作物改善铺平了道路。该项目的目标与遗传学的总体关注点保持一致:确定影响个人对环境如何反应环境的DNA变体。在这里,“个人”和“环境”的概念很复杂。将确定一种物种中的DNA变体,与外部环境条件同时影响另一个相互作用物种的反应。所考虑的环境环境是温暖的夜间温度(WNT),这是一个关键,高度相关和当前的环境问题。从培养线和野生线之间的交叉衍生的遗传变化番茄植物将被遗传均匀的寄生线虫感染。也将使用未感染的植物进行对照实验。这些早期,迟到和控制实验将在两个温度状态下进行:正常的夜间温度和WNT。对于每种治疗组合,将收集与感染和植物健康有关的表型,以及植物和线虫的基因表达数据。通过这种设计,将建立番茄基因组中的DNA变体与线虫的分子反应以及植物之间的连接,Wnt对这些连接的影响将通过一系列基因映射实验来发现这些连接。通过以这种方式确定的连接,可以推断出更复杂的基因型表达 - 表达途径,从而提供了植物寄生虫相互作用响应对Wnt的分子生物学的详细视图。它还将查明承诺候选基因,该基因将在功能上验证。所有项目成果将通过出版物和长期存储库中的数据和资源出版物公开访问。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,通过评估诚实地认为通过评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter DiGennaro其他文献

Peter DiGennaro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

通过构建Pgr-Cas9工具小鼠研究Hippo通路效应因子Yap1/Wwtr1在蜕膜化过程中的作用
  • 批准号:
    32370913
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
海洋硅藻PGR5/PGRL1蛋白感知和适应波动光的作用机制研究
  • 批准号:
    42276146
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
KLF12通过调控PGR和GDF10的表达抑制孕激素诱导子宫内膜癌细胞分化的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
HBP1调节PGR转录活性在胚胎植入及妊娠维持中的作用机制
  • 批准号:
    82160296
  • 批准年份:
    2021
  • 资助金额:
    34.00 万元
  • 项目类别:
    地区科学基金项目
KLF12通过调控PGR和GDF10的表达抑制孕激素诱导子宫内膜癌细胞分化的机制研究
  • 批准号:
    82172819
  • 批准年份:
    2021
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
  • 批准号:
    2331437
  • 财政年份:
    2024
  • 资助金额:
    $ 179.71万
  • 项目类别:
    Standard Grant
Collaborative Research: TRTech-PGR TRACK: Discovery and characterization of small CRISPR systems for virus-based delivery of heritable editing in plants.
合作研究:TRTech-PGR TRACK:小型 CRISPR 系统的发现和表征,用于基于病毒的植物遗传编辑传递。
  • 批准号:
    2334028
  • 财政年份:
    2024
  • 资助金额:
    $ 179.71万
  • 项目类别:
    Standard Grant
RESEARCH-PGR: Cycling to low-temperature tolerance
研究-PGR:循环到耐低温
  • 批准号:
    2332611
  • 财政年份:
    2024
  • 资助金额:
    $ 179.71万
  • 项目类别:
    Continuing Grant
TRTech-PGR: PlantTransform: Boosting Agrobacterium-mediated transformation efficiency in the orphan crop tef (Eragrostis tef) for trait improvement
TRTech-PGR:PlantTransform:提高孤儿作物 tef(画眉草 tef)中农杆菌介导的转化效率,以改善性状
  • 批准号:
    2327906
  • 财政年份:
    2024
  • 资助金额:
    $ 179.71万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
  • 批准号:
    2331438
  • 财政年份:
    2024
  • 资助金额:
    $ 179.71万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了