Solution-processed laser diodes utilizing colloidal quantum wells

利用胶体量子阱进行溶液加工的激光二极管

基本信息

  • 批准号:
    2208834
  • 负责人:
  • 金额:
    $ 36.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

The prospect of printing laser diodes from nanoparticle inks has been regarded as a breakthrough paradigm in fields of medical imaging, flexible substrate photonics, and optical communications. Nanoparticle-based lasers are considerably less expensive than traditional solid-state counterparts and offer a far broader range of accessible colors. A notorious problem of printable lasers concerns a sharp decline in the optical output of semiconductor nanoparticles with increasing laser power. This issue negatively affects both the longevity and the efficiency of these devices. The proposed project aims to address this problem by developing a novel class of semiconductor nanoparticles, which is designed to withstand high-power conditions of a lasing element. The proposed innovation will rely on a spherically-layered nanoparticle geometry (colloidal quantum wells) to achieve an optimal redistribution of an incident power, thus preventing optical energy losses and thermal damage. The project will investigate how to interface these nanoparticles with electrodes and how to ensure an efficient light propagation in the laser assembly. The successful demonstration of colloidal quantum-well laser diodes will allow photonic circuits to be fabricated at lower costs, offer an on-demand tunable emission colors, and exhibit an excellent compatibility with a wide variety of substrates. As an integral part of this project, the PI will lead a multi-faceted educational effort that will involve: (i) – fostering an inclusive undergraduate research, (ii) – developing a new, upper-level nanophotonics course, recently approved by the university administration, (iii) – hosting an annual research experience program for undergraduates, and (iv) - providing an interdisciplinary training of graduate students, facilitated by the collaborative nature of the project. TECHNICAL DESCRIPTION: Lasers diodes processed from solutions of semiconductor quantum dots (QD) can potentially evolve as an economical and color-tunable alternative to conventional epitaxial lasers. The main obstacle facing the development of QD laser technology concerns a sharp decline in the efficiency of stimulated emission when more than one electron-hole pair (exciton) per particle is created. Multiple excitons trapped within a small volume of a QD undergo fast Auger recombination, causing an efficiently roll-off with increasing electrical pumping. The proposed project aims to address this issue by replacing traditional semiconductor quantum dots with spherical quantum wells, which geometry is optimized for suppressing Auger decay of multiple excitons through their mutual repulsion. Along these lines, the project will focus on chemical synthesis of colloidal quantum wells and address all aspects of device design, including solution-processing of the light-emitting layer, optimizing electrical interfaces, and fabricating the resonant laser cavity. It is expected that a strong suppression of Auger recombination in colloidal quantum wells will enable a significant reduction in the current densities needed for light amplification in solution-processed lasers. Meanwhile, low-dimensional nature of quantum wells will allow tuning the laser emission continuously throughout visible and infrared (telecom) spectral windows. Ultimately, this investigation will seek to demonstrate competitive solution-processed laser diodes for integration with printable photonic circuits.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从纳米粒子油墨打印激光二极管的前景被认为是医学成像,柔性底物光子学和光学通信领域的突破范式。认为基于纳米颗粒的激光器比传统的固态同类产品便宜,并提供了广播范围的一系列可访问颜色。可打印激光器的一个臭名昭著的问题是,随着激光功率的增加,半导体纳米颗粒的光输出急剧下降。这个问题对这些设备的寿命和效率都产生了负面影响。拟议的项目旨在通过开发一类新型的半导体纳米颗粒来解决这一问题,该纳米颗粒旨在承受激光元件的高功率条件。提出的创新将依赖于球形的纳米颗粒几何形状(胶体量子井)来实现入射功率的最佳重新分布,从而防止光能损失和热损伤。项目将研究如何与电极连接这些纳米颗粒,以及如何确保激光组件中有效的光传播。胶体量子 - 孔 - 孔激光二极管的成功演示将使光子电路以较低的成本制造,提供按需调谐发射颜色,并具有与多种底物的出色兼容性。 As an integral part of this project, the PI will lead a multi-faceted educational effort That will involve: (i) – fostering an inclusive undergraduate research, (ii) – developing a new, upper-level nanophotonics course, recently approved by the university administration, (iii) – hosting an annual research experience program for undergraduates, and (iv) – providing an interdisciplinary training of graduate students, facilitated by the该项目的协作性质。技术描述:从半导体量子点(QD)溶液处理的激光二极管可以作为常规外延激光器的一种经济和色彩可调的替代品。 QD激光技术发展的主要障碍是,当创建每个粒子的一个以上的电子孔对(激子)时,刺激发射的效率急剧下降。被困在QD中的多个激子经历了快速的螺旋螺旋体重组,从而导致电动泵增加的有效滚动。拟议的项目旨在通过用球形量子井来代替传统的半导体量子点来解决这个问题,该量子井被优化,以通过相互抑制来抑制多个激子的螺旋钻腐烂。沿着这些线路,该项目将集中于胶体量子井的化学合成,并解决设备设计的各个方面,包括发光层的解决方案处理,优化电气接口并制造谐振激光腔。预计在胶体量子井中对螺旋钻重组的强烈抑制作用将使溶液处理激光器中光扩增所需的当前密度显着降低。同时,量子井的低维质将允许在可见的和红外(电信)光谱窗口中连续调整激光发射。最终,这项投资将寻求展示具有可打印光子电路的竞争性解决方案所处理的激光二极管。该奖项反映了NSF的法定任务,并通过评估该基金会的知识分子优点和更广泛的影响来审查标准,被认为是宝贵的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CdS/CdSe/CdS Spherical Quantum Wells with Near-Unity Biexciton Quantum Yield for Light-Emitting-Device Applications
  • DOI:
    10.1021/acsmaterialslett.3c00110
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mikhail Zamkov其他文献

Influence of QD photosensitizers in the photocatalytic production of hydrogen with biomimetic [FeFe]-hydrogenase. Comparative performance of CdSe and CdTe
  • DOI:
    10.1016/j.chemosphere.2021.130485
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Juan Corredor;Dulanjan Harankahage;Frederic Gloaguen;Maria J. Rivero;Mikhail Zamkov;Inmaculada Ortiz
  • 通讯作者:
    Inmaculada Ortiz

Mikhail Zamkov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mikhail Zamkov', 18)}}的其他基金

Reaction Limited Synthesis of Atomically-Defined Semiconductor Nanocrystals
原子定义的半导体纳米晶体的反应有限合成
  • 批准号:
    1710063
  • 财政年份:
    2017
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing Grant
UNS: Exploring the feasibility of plasmonic nanocrystal solar cells utilizing strongly confined radiation.
UNS:探索利用强约束辐射的等离子体纳米晶体太阳能电池的可行性。
  • 批准号:
    1510503
  • 财政年份:
    2015
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
Energy funneling in plasmonic nanocrystal composites for photocatalytic production of solar fuels
用于光催化生产太阳能燃料的等离子体纳米晶体复合材料中的能量漏斗
  • 批准号:
    1465052
  • 财政年份:
    2015
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
Low-temperature assembly of all-inorganic solar cells from nanocrystal inks.
用纳米晶体墨水低温组装全无机太阳能电池。
  • 批准号:
    1236355
  • 财政年份:
    2012
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
Development of nanocomposite inorganic materials for photocatalytic production of solar fuels
开发用于光催化生产太阳能燃料的纳米复合无机材料
  • 批准号:
    1112227
  • 财政年份:
    2011
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing Grant

相似国自然基金

激光诱导击穿光谱的图像化特征重构机理及方法研究
  • 批准号:
    62305392
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
面向复杂城市车载激光点云的域自适应语义分割方法研究
  • 批准号:
    42301500
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于PDE图像处理的激光图像去噪、分割与增强研究
  • 批准号:
    12371419
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于激光处理的超薄电双层型突触晶体管的物性调控研究
  • 批准号:
    62304039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向透明材料处理的超快激光原位表征与调控研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Interface Formation in Laser Processed Thermoelectric Materials
职业:激光加工热电材料中的界面形成
  • 批准号:
    1943104
  • 财政年份:
    2020
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
Functionality of CdrA and its processed forms within Pseudomonas aeruginosa biofilms
CdrA 的功能及其在铜绿假单胞菌生物膜中的加工形式
  • 批准号:
    10451834
  • 财政年份:
    2019
  • 资助金额:
    $ 36.47万
  • 项目类别:
Functionality of CdrA and its processed forms within Pseudomonas aeruginosa biofilms
CdrA 的功能及其在铜绿假单胞菌生物膜中的加工形式
  • 批准号:
    10410640
  • 财政年份:
    2019
  • 资助金额:
    $ 36.47万
  • 项目类别:
Functionality of CdrA and its processed forms within Pseudomonas aeruginosa biofilms
CdrA 的功能及其在铜绿假单胞菌生物膜中的加工形式
  • 批准号:
    10661570
  • 财政年份:
    2019
  • 资助金额:
    $ 36.47万
  • 项目类别:
Functionality of CdrA and its processed forms within Pseudomonas aeruginosa biofilms
CdrA 的功能及其在铜绿假单胞菌生物膜中的加工形式
  • 批准号:
    9804941
  • 财政年份:
    2019
  • 资助金额:
    $ 36.47万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了