UNS: Exploring the feasibility of plasmonic nanocrystal solar cells utilizing strongly confined radiation.

UNS:探索利用强约束辐射的等离子体纳米晶体太阳能电池的可行性。

基本信息

  • 批准号:
    1510503
  • 负责人:
  • 金额:
    $ 34.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

PI Name: Mikhail ZamkovProposal number: 1510503The sun represents the most abundant potential source of sustainable energy on earth. Solar cells convert sunlight to electricity through the use of photovoltaic (PV) materials, which are expensive. One method to reduce the cost of making PV materials is to cast suspensions of nano-sized semiconductor crystals called quantum dots into a continuous thin sheet, a process called solution processing. However, thin-film PV materials made by this method have a poor trade off with respect to the thickness needed to provide good solar energy absorption versus good electrical conduction through the film. To address this issue, the goal of this project is to introduce another type of nano-sized metal particle into the solution processing scheme that will improve the power conversion performance of the thin film. This specially designed metal particle, called a plasmonic particle, exploits a quantum mechanical principle called confined radiation to improve the light absorption of the film, leading to potential improvements in the power conversion efficiency. The educational activities associated with the project will involve undergraduates in research through the Building Ohio's Sustainable Energy Future (BOSEF) program.The solution-based fabrication of colloidal semiconductor nanocrystals (quantum dots) into thin-film photovoltaic (PV) devices offers a route for low-cost manufacture. Unfortunately, the electrical conductivity in solution-cast semiconductor PV thin films is poor, requiring exceptionally thin films that cannot fully absorb the incident light. The overall goal of the proposed research is to fabricate and study the performance of photovoltaic cells which rely on the near-field antenna emission of metal nanoparticles to funnel solar energy into the absorber layer. Theoretically, this type of plasmon radiation can enhance the optical density of photovoltaic devices beyond the conventional far-field scattering employed by most plasmonic or photonically-enhanced crystal cells. If successful, this enhanced absorption layer can fully absorb light at film thicknesses needed to maintain low conduction losses, leading to enhanced photovoltaic performance. To enable the photovoltaic conversion of near-field emission into electric power, plasmonic films will be assembled by doping the semiconductor nanocrystal solids with electrically-insulated metal nanoparticles where the far-field emission is suppressed. In this way, the near-field emission will be harvested by coupling the plasmon radiation directly to resonant transitions of semiconductor nanocrystals. Photoconductivity and time-resolved spectroscopy will be used to measure near-field energy conversion into electrical power. The thermal impact of heat-prone metal nanoparticles will be alleviated by using a matrix-encapsulation approach, where colloidal nanocrystals are imbedded into all-inorganic matrices that have tunable interparticle distances. The proposed research will be conducted in collaboration with the Wright Center for Photovoltaics Innovation and Commercialization (PVIC), where students will be trained the industry-grade equipment and build scientific relationships with industry partners.
PI名称:Mikhail Zamkovpropopals编号:1510503 Sun是地球上可持续能源的最丰富潜在来源。 太阳能电池通过使用昂贵的光伏(PV)材料将阳光转化为电能。 降低制造PV材料成本的一种方法是将称为量子点的纳米尺寸半导体晶体的悬浮液变成连续的薄纸,这是一种称为溶液处理的过程。 但是,这种方法制造的薄膜PV材料在提供良好的太阳能吸收所需的厚度与通过膜的良好电导传导所需的厚度不佳。 为了解决这个问题,该项目的目标是将另一种类型的纳米尺寸金属粒子引入溶液处理方案,以改善薄膜的功率转换性能。这个特殊设计的金属颗粒(称为等离子粒子)利用了称为限制辐射的量子机械原理,以改善膜的光吸收,从而潜在提高功率转换效率。 与该项目相关的教育活动将涉及俄亥俄州可持续能源未来(BOSEF)计划的研究。基于解决方案的胶体半导体纳米晶体(量子点)基于解决方案的制造为薄膜光伏(PV)设备,为低调制造提供了一条路线。 不幸的是,溶液铸成半导体PV薄膜中的电导率很差,需要异常薄膜,这些薄膜无法完全吸收入射光。 拟议的研究的总体目标是制造和研究光伏细胞的性能,这些细胞依赖于金属纳米颗粒的近场天线发射,以将太阳能融入吸收层。从理论上讲,这种类型的等离子辐射可以增强光伏设备的光密度,而不是大多数等离子或光子增强晶体细胞所采用的常规远场散射。 如果成功,这种增强的吸收层可以完全吸收保持低传导损失所需的膜厚度,从而增强光伏性能。 为了使近场发射到电力的光伏转换,等离子膜将通过将半导体纳米晶体固体与电隔离的金属纳米颗粒掺杂,在该半导体纳米晶体固体中抑制了远场发射。 这样,将通过将等离子体辐射直接与半导体纳米晶体的谐振过渡耦合来收获近场发射。 光电导率和时间分辨光谱将用于测量近场能量转换为电力。使用基质包裹方法将减轻热易热金属纳米颗粒的热影响,在这种方法中,将胶体纳米晶体嵌入具有可调式颗粒距离的全无机矩阵中。 拟议的研究将与赖特光伏创新与商业化中心(PVIC)合作进行,在该中心将对学生进行行业级设备培训并与行业合作伙伴建立科学关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mikhail Zamkov其他文献

Influence of QD photosensitizers in the photocatalytic production of hydrogen with biomimetic [FeFe]-hydrogenase. Comparative performance of CdSe and CdTe
  • DOI:
    10.1016/j.chemosphere.2021.130485
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Juan Corredor;Dulanjan Harankahage;Frederic Gloaguen;Maria J. Rivero;Mikhail Zamkov;Inmaculada Ortiz
  • 通讯作者:
    Inmaculada Ortiz

Mikhail Zamkov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mikhail Zamkov', 18)}}的其他基金

Solution-processed laser diodes utilizing colloidal quantum wells
利用胶体量子阱进行溶液加工的激光二极管
  • 批准号:
    2208834
  • 财政年份:
    2022
  • 资助金额:
    $ 34.61万
  • 项目类别:
    Standard Grant
Reaction Limited Synthesis of Atomically-Defined Semiconductor Nanocrystals
原子定义的半导体纳米晶体的反应有限合成
  • 批准号:
    1710063
  • 财政年份:
    2017
  • 资助金额:
    $ 34.61万
  • 项目类别:
    Continuing Grant
Energy funneling in plasmonic nanocrystal composites for photocatalytic production of solar fuels
用于光催化生产太阳能燃料的等离子体纳米晶体复合材料中的能量漏斗
  • 批准号:
    1465052
  • 财政年份:
    2015
  • 资助金额:
    $ 34.61万
  • 项目类别:
    Standard Grant
Low-temperature assembly of all-inorganic solar cells from nanocrystal inks.
用纳米晶体墨水低温组装全无机太阳能电池。
  • 批准号:
    1236355
  • 财政年份:
    2012
  • 资助金额:
    $ 34.61万
  • 项目类别:
    Standard Grant
Development of nanocomposite inorganic materials for photocatalytic production of solar fuels
开发用于光催化生产太阳能燃料的纳米复合无机材料
  • 批准号:
    1112227
  • 财政年份:
    2011
  • 资助金额:
    $ 34.61万
  • 项目类别:
    Continuing Grant

相似国自然基金

构建神经系统成纤维细胞多组学图谱探索其在神经系统发育中的功能
  • 批准号:
    32371023
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
染色质重塑子对儿童智力发育障碍的机制研究及诊断标志物探索
  • 批准号:
    82330049
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
肝胆肿瘤治疗性溶瘤腺病毒疫苗的研制及其临床前应用性探索
  • 批准号:
    82303776
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向地下受限空间的无人机同时探索与覆盖规划研究
  • 批准号:
    62303249
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
探索提高受体相荧光量子效率,降低器件非辐射能量损失的新型三元有机光伏体系构筑策略
  • 批准号:
    22309098
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

行動薬理学的研究による新規抗うつ薬の可能性の探索
通过行为药理学研究探索新型抗抑郁药的潜力
  • 批准号:
    24K06626
  • 财政年份:
    2024
  • 资助金额:
    $ 34.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
進行期子宮頸癌に対する放射線療法と併用可能な免疫応答性遺伝子変異の探索
寻找可与晚期宫颈癌放疗相结合的免疫反应基因突变
  • 批准号:
    24K10924
  • 财政年份:
    2024
  • 资助金额:
    $ 34.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploring KANSEI and interactive behavior of pedestrians and crews of quasi-autonomous vehicle
探索准自动驾驶汽车行人和乘员的感性和互动行为
  • 批准号:
    23H01532
  • 财政年份:
    2023
  • 资助金额:
    $ 34.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Exploring the feasibility of pumped hydroelectric energy storage (PHES) using seawater in South Africa
探索南非利用海水抽水蓄能(PHES)的可行性
  • 批准号:
    10048467
  • 财政年份:
    2023
  • 资助金额:
    $ 34.61万
  • 项目类别:
    Feasibility Studies
Exploring longitudinal and momentary effects of family functioning on obesity risk behaviors in Hispanic adolescents and family units
探索家庭功能对西班牙裔青少年和家庭单位肥胖风险行为的纵向和瞬时影响
  • 批准号:
    10724545
  • 财政年份:
    2023
  • 资助金额:
    $ 34.61万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了