STTR Phase II: Artificial Intelligence (AI)-based Development of Neutralizing Antibodies for SARS-CoV-2
STTR 第二阶段:基于人工智能 (AI) 的 SARS-CoV-2 中和抗体开发
基本信息
- 批准号:2136860
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Cooperative Agreement
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) project will lead to the development of engineered neutralizing antibodies for the SARS-CoV-2 virus that can be used as therapeutic agents to diminish the severity of a COVID-19 infection and decrease the chances of hospitalization and progressive disease. As the SARS-CoV-2 virus continues to mutate it is necessary to increase collective preparedness by generating a wide collection of neutralizing antibodies that individually provide coverage for a range of variants (Delta, Beta, Omicron). These antibodies, when administered as an antibody cocktail, may offer broad protection over a diverse population of variants. This project’s approach generates neutralizing antibodies that are specifically engineered to bind to different regions of the spike protein thereby increasing the probability that one or more of the engineered antibodies will be effective against future mutated versions of the virus. The proposed combination of high-throughput screening, next-generation-sequencing and artificial intelligence (AI)-based antibody design allows systematic exploration of vast ranges of antibody sequences. This approach also has the benefit of engineering antibodies that are more potent, easier to administer, more stable under challenging environmental conditions, and less costly to manufacture, leading to therapeutics that can be more readily distributed to low-income countries.This STTR Phase II project proposes to enable AI and machine learning antibody engineering approaches by providing needed antibody sequence mutation binding data. Currently available antibody datasets number in the thousands of datapoints and the team proposes to generate datasets that number in the tens of millions. The project will also be generating both positive and negative antibody binding data, potentially leading to higher performing learned antibody binding models. This project seeks to test the hypothesis that synthetic antibodies can be the equal of, or better than, naturally occurring antibodies for neutralizing SARS-CoV-2 infectivity. This approach could potentially develop a wide range of antibody variations. The application of this AI-based antibody engineering will be focused on discovering a large array of high-affinity neutralizing antibodies targeting multiple, different regions of the SARS-CoV-2 spike protein through the combination of yeast-display, high-throughput fluorescence-activated cell sorting (FACS) and next generation sequencing. Combining these high-throughput data generation workflows with the latest deep neural networks may lead to a new methodology that can efficiently discover high performing antibodies for the current pandemic and those in the future.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该小企业创新研究 (SBIR) 项目的更广泛影响/商业潜力将导致针对 SARS-CoV-2 病毒的工程化中和抗体的开发,该抗体可用作治疗剂以减轻 COVID-19 感染的严重程度随着 SARS-CoV-2 病毒持续变异,有必要通过产生广泛的中和抗体来加强集体准备,这些抗体可单独覆盖一系列变体(Delta、Beta、这些抗体作为抗体混合物施用时,可以对多种变体提供广泛的保护,该项目的方法产生了经过专门设计以结合刺突蛋白不同区域的中和抗体,从而增加了一种或多种变体的可能性。更多的工程抗体将有效对抗未来的病毒突变版本。所提议的高通量筛选、下一代测序和基于人工智能(AI)的抗体设计相结合,可以系统地探索大量的抗体序列。这种方法还具有工程化抗体的好处是更有效、更容易管理、在具有挑战性的环境条件下更稳定、制造成本更低,从而使治疗方法更容易分发到低收入国家。这个 STTR 第二阶段项目旨在使人工智能成为可能通过提供所需的抗体序列突变结合数据和机器学习抗体工程方法,目前可用的抗体数据集有数千个数据点,该团队建议生成数千万个数据集。抗体结合数据,可能导致更高性能的学习该项目旨在测试以下假设:合成抗体在中和 SARS-CoV-2 感染方面可以等同于或优于天然抗体,这种方法可能会开发出广泛的抗体变体应用。这种基于人工智能的抗体工程的重点是通过酵母展示、高通量荧光激活细胞的结合,发现针对 SARS-CoV-2 刺突蛋白多个不同区域的大量高亲和力中和抗体分选(FACS)和将这些高通量数据生成工作流程与最新的深度神经网络相结合可能会产生一种新的方法,可以有效地发现针对当前流行病和未来流行病的高性能抗体。该奖项反映了 NSF 的法定使命,并已通过使用基金会的智力优点和更广泛的影响审查标准进行评估,认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Barry Olafson其他文献
Barry Olafson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Barry Olafson', 18)}}的其他基金
STTR Phase I: COVID-19: AI-based Development of Neutralizing Antibodies for SARS-CoV-2
STTR 第一阶段:COVID-19:基于人工智能的 SARS-CoV-2 中和抗体开发
- 批准号:
2027586 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
STTR Phase II: Development of a computational protein engineering platform and its application to methane activating enzymes
STTR第二阶段:计算蛋白质工程平台的开发及其在甲烷活化酶中的应用
- 批准号:
1534743 - 财政年份:2015
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
STTR Phase I: Engineering a recombinant methane monooxygenase to convert methane to methanol for the production of fuels and chemicals
STTR 第一阶段:设计重组甲烷单加氧酶,将甲烷转化为甲醇,用于生产燃料和化学品
- 批准号:
1346523 - 财政年份:2014
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
STTR Phase I: Engineering Polysaccharide Monooxygenases for Enhanced Sugar Recovery From Biomass
STTR 第一阶段:工程化多糖单加氧酶以增强从生物质中回收糖
- 批准号:
1332185 - 财政年份:2013
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
SBIR Phase I: Engineering Hydrolytic Enzymes for Enhanced Sugar Recovery From Biomass
SBIR 第一阶段:工程水解酶以增强从生物质中回收糖
- 批准号:
1215234 - 财政年份:2012
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
相似国自然基金
动态疾病队列数据的最优二阶段抽样设计及因果推断
- 批准号:12271330
- 批准年份:2022
- 资助金额:46 万元
- 项目类别:面上项目
东亚夏季风在二氧化碳排放增减阶段中的响应差异及机理
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
西太平洋地球系统多圈层相互作用学术活动和战略研究 (第二阶段)
- 批准号:92058000
- 批准年份:2020
- 资助金额:300.0 万元
- 项目类别:重大研究计划
家系研究的统计推断与有偏二阶段抽样设计
- 批准号:11901376
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
面向数据发布隐私保护的分级多样性匿名方法研究
- 批准号:61862019
- 批准年份:2018
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
相似海外基金
STTR Phase II: Dermatologist-level detection of suspicious pigmented skin lesions from high-resolution full-body images
STTR II 期:通过高分辨率全身图像对可疑色素性皮肤病变进行皮肤科医生级别的检测
- 批准号:
2335086 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Cooperative Agreement
STTR Phase II: Thermal Imaging, Augmentation of Microwave Energy in Various Tissues and Chronic Safety
STTR 第二阶段:热成像、增强各种组织中的微波能量和长期安全性
- 批准号:
2301440 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Cooperative Agreement
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
- 批准号:
2332121 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Cooperative Agreement
STTR Phase II: Earth-abundant catalyst for power-to-liquids chemical production at the kiloton scale
STTR 第二阶段:地球储量丰富的催化剂,用于千吨级电力转化为液体的化学生产
- 批准号:
2304275 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Cooperative Agreement
STTR Phase II: Fabrication and Structural Testing of a 3D Concrete Printed Anchor for Floating Offshore Wind
STTR 第二阶段:用于浮动海上风电的 3D 混凝土打印锚的制造和结构测试
- 批准号:
2333306 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Cooperative Agreement