Collaborative Research: Two-photon absorption engineering in laser diodes for ultrafast pulse generation
合作研究:用于超快脉冲生成的激光二极管中的双光子吸收工程
基本信息
- 批准号:2133195
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Semiconductor lasers are one of the most impactful photonic technologies on the market, with applications ranging from communications to medicine. However, the amount of power that can be obtained from short pulses of light remains low, despite decades of research. The problem is due to physical constraints, which the project will address through an interdisciplinary effort combing emerging materials synthesis with advanced optical physics to create short pulses with power well beyond the current state of the art. This will enable significant advances in both scientific understanding and practical performance, and will yield sources ideal for applications ranging from laser radar for autonomous vehicle navigation to advanced microscopy. The project will further benefit society by integrating research results with education through courses, and into an online course that was launched as part of the University of Colorado Boulder's Master of Science in Electrical Engineering (an online Master's degree). Additional dissemination and engagement will occur through avenues ranging from undergraduate research opportunities, a diversity, equity, and inclusion seminar series, ECEE Connects at the University of Colorado Boulder, as well as science events at the Texas School for the Deaf.Nonlinearities like two-photon absorption limit semiconductor lasers in both the high power CW and ultrashort pulse arenas, constraining the available peak powers, pulse widths, and pulse energies. For pulsed sources, dispersion compensation provides some improvement; however, less-compact alternatives, such as fiber and solid-state lasers currently offer vastly superior performance. This project will combine recent advances in crystal growth and optical laser pulse shaping techniques to solve these issues and dramatically advance the performance of semiconductor ultrafast sources. Specifically. high-bandgap semiconductor cladding layers can now be epitaxially integrated with longer-wavelength gain media to reduce two-photon absorption by orders of magnitude. When coupled with a new pulse shaping mechanism and pulse stacking, it is anticipated that this approach will enable kW peak powers and femtosecond pulses on a chip-scale semiconductor platform. The impact of the project will be further enhanced through a number of engagements and outreach activities and undergraduate research opportunities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
半导体激光器是市场上最具影响力的光子技术之一,其应用范围从通信到医学。然而,尽管经过了数十年的研究,从短光脉冲中获得的能量仍然很低。这个问题是由于物理限制造成的,该项目将通过跨学科的努力来解决这个问题,将新兴材料合成与先进的光学物理相结合,以产生功率远远超出当前技术水平的短脉冲。这将使科学理解和实际性能取得显着进步,并将产生从用于自动车辆导航的激光雷达到先进显微镜等应用的理想来源。该项目将通过课程将研究成果与教育相结合,并将其纳入作为科罗拉多大学博尔德分校电气工程理学硕士(在线硕士学位)一部分推出的在线课程,从而进一步造福社会。额外的传播和参与将通过本科生研究机会、多样性、公平性和包容性研讨会系列、科罗拉多大学博尔德分校的 ECEE Connects 以及德克萨斯州聋人学校的科学活动等多种途径进行。非线性,如两个-光子吸收限制了半导体激光器在高功率连续波和超短脉冲领域的应用,限制了可用的峰值功率、脉冲宽度和脉冲能量。对于脉冲源,色散补偿提供了一些改进;然而,不太紧凑的替代品,例如光纤和固态激光器,目前提供了极其优越的性能。该项目将结合晶体生长和光学激光脉冲整形技术的最新进展来解决这些问题,并显着提高半导体超快源的性能。具体来说。高带隙半导体熔覆层现在可以与更长波长增益介质外延集成,以将双光子吸收减少几个数量级。当与新的脉冲整形机制和脉冲叠加相结合时,预计这种方法将在芯片级半导体平台上实现千瓦峰值功率和飞秒脉冲。该项目的影响力将通过一系列的参与和外展活动以及本科生研究机会得到进一步增强。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juliet Gopinath其他文献
Juliet Gopinath的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juliet Gopinath', 18)}}的其他基金
Collaborative Research: NCS-FO: Modified two-photon microscope with high-speed electrowetting array for imaging voltage transients in cerebellar molecular layer interneurons
合作研究:NCS-FO:带有高速电润湿阵列的改良双光子显微镜,用于对小脑分子层中间神经元的电压瞬变进行成像
- 批准号:
2319405 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
MRI: Acquisition of an Electron Beam Lithography System for Quantum Engineering and Nanoscience Research, Education and Training
MRI:采购用于量子工程和纳米科学研究、教育和培训的电子束光刻系统
- 批准号:
2215550 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Chalcogenide-based nonlinear optical gyroscope
基于硫族化物的非线性光学陀螺仪
- 批准号:
2224065 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
I-Corps: Non-mechanical scanning for laser ranging
I-Corps:用于激光测距的非机械扫描
- 批准号:
2244845 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: MRI Consortium: Development of Fiber-coupled Stimulated Emission Depletion Microscopy (STED)
合作研究:MRI 联盟:光纤耦合受激发射损耗显微镜 (STED) 的开发
- 批准号:
1919541 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: Shedding light on brain circuits mediating navigation of the odor plume in a natural environment
合作研究:NCS-FR:揭示自然环境中介导气味羽流导航的大脑回路
- 批准号:
1926668 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
PFI-TT: Laser ranging system with tunable optical elements
PFI-TT:具有可调谐光学元件的激光测距系统
- 批准号:
1919148 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
RAISE: TAQS: On-Chip Entanglement, Preparation, Manipulation, and Detection for Integrated All Quantum Information Processing
RAISE:TAQS:用于集成全量子信息处理的片上纠缠、准备、操纵和检测
- 批准号:
1838435 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
GOALI: Stimulated Raman microscopy for sensitive real-time detection of membrane fouling
GOALI:受激拉曼显微镜用于灵敏地实时检测膜污染
- 批准号:
1826542 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
苯并二噁唑桥联全共轭共价有机骨架的合成及其光催化水劈裂制氢性能研究
- 批准号:52373210
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
MOFs/COFs质量型二氧化碳气体传感器的研究
- 批准号:62371206
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
低共熔溶剂与水二元体系从超浓电解液到稀水溶液转变过程中的界面结构及反应动力学研究
- 批准号:22372140
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于二元重编程的归一化肿瘤疫苗在局部晚期三阴乳腺癌新辅助治疗中的作用与机制研究
- 批准号:32371451
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400352 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400353 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: 4D Visualization and Modeling of Two-Phase Flow and Deformation in Porous Media beyond the Realm of Creeping Flow
合作研究:蠕动流领域之外的多孔介质中两相流和变形的 4D 可视化和建模
- 批准号:
2326113 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: EPIIC: Managing Culture Change on Two Fronts: Strengthening Our Capacity to Develop Partnerships
合作研究:EPIIC:从两个方面管理文化变革:加强我们发展伙伴关系的能力
- 批准号:
2331372 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Mapping Excited State Trajectories of Multi-metal Centered Complexes by Two-Dimensional Electronic Spectroscopy
CAS:合作研究:通过二维电子光谱绘制多金属中心配合物的激发态轨迹
- 批准号:
2247821 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant