Collaborative Research: Novel Plasma Physics of Trapped Antimatter

合作研究:捕获反物质的新型等离子体物理学

基本信息

  • 批准号:
    2205620
  • 负责人:
  • 金额:
    $ 23.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

This award enables an exploration of future experiments for studying asymmetry between matter and antimatter. The prevalence of matter over antimatter is one of the most important unexplained observations in physics. As currently understood, the laws of physics obey symmetry properties that predict equality between the two forms of matter – at odds with our everyday experience as well as detailed astronomical observations. Such an inconsistency suggests that our current understanding of the laws of physics may be incomplete. ALPHA is an interdisciplinary antimatter experiment at CERN that tests this notion by producing antihydrogen and sensitively measuring its properties in comparison with the hydrogen atom. Trapping antimatter to produce antihydrogen is a plasma physics problem, consisting of collecting and manipulating large collections of charged particles using electric and magnetic fields. This project conducted in collaboration between the University of Michigan - Ann Arbor and Marquette University will advance understanding of novel plasma physics processes that occur in these experiments and develop protocols for possible future experiments. The project also supports development of interactive science exhibits for display at the Discovery World Science and Technology Center in Milwaukee, WI and at the Plasma Expo during the American Physical Society Division of Plasma Physics annual meetings.Trapped antimatter is novel from a plasma physics perspective, as well as a particle physics perspective. These plasmas are so cold, and the magnetic fields of the trap are so strong, that they exist in a state that is not well described by the usual models of plasma physics. Specifically, the low temperature causes the plasma to be strongly coupled, which means that it behaves more like a supercritical fluid or a liquid, than the more common dilute-gas-like behavior. The strong applied magnetic field, in combination with the low density, also causes the plasma to be strongly magnetized. Currently understood methods of plasma theory do not apply in either of these circumstances. The research to be conducted will further develop recent theoretical approaches that extend plasma theory into these domains. The work will apply a newly developed kinetic theory and molecular dynamics simulations to advance understanding of three critical plasma-related processes: electron and positron compression, antiproton cooling, and mixing and recombination of antiprotons and positrons. Molecular dynamics simulations will be used to test the model development. The advanced models will be applied to explore more efficient ways to convert collections of positrons and antiprotons into antihydrogen atoms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项能够探索未来研究物质和反物质之间不对称性的实验。 物质相对于反物质的普遍存在是物理学中最重要的无法解释的观察结果之一,正如目前所理解的,物理定律遵循预测两者之间相等性的对称性。与我们的日常经验以及详细的天文观测不一致,这表明我们目前对物理定律的理解可能不完整。通过产生反氢并与氢原子进行比较来灵敏地测量其特性是一个等离子体物理问题,包括使用电场和磁场收集和操纵大量带电粒子。密歇根大学安娜堡分校和马凯特大学将促进对这些实验中发生的新颖等离子体物理过程的理解,并为未来可能的实验制定协议。该项目还支持开发在探索世界科学技术中心展示的互动科学展览。在威斯康星州密尔沃基和美国物理学会等离子体物理学分会期间的等离子体博览会。从等离子体物理学和粒子物理学的角度来看,捕获的反物质都是新颖的。这些等离子体非常冷,而且等离子体的磁场也很新颖。陷阱是如此强大,以至于它们以一种通常的强等离子体物理模型无法很好描述的状态存在。具体来说,低温导致等离子体耦合,这意味着它的行为更像是超临界流体或液体。 ,比更常见的强的外加磁场与低密度相结合也会导致等离子体被强烈磁化,而目前所理解的等离子体理论方法不适用于这两种情况。进一步发展最新的理论方法,将等离子体理论扩展到这些领域,这项工作将应用新开发的动力学理论和分子动力学模拟来加深对三个关键等离子体相关过程的理解:电子和正电子压缩、反质子冷却以及混合和重组。反质子和正电子。分子动力学模拟将用于测试模型的开发,以探索将正电子和反质子集合转化为反氢原子的更有效方法。该奖项反映了 NSF 的法定使命,并通过使用评估被认为值得支持。基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy Tharp其他文献

Timothy Tharp的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347992
  • 财政年份:
    2024
  • 资助金额:
    $ 23.34万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347991
  • 财政年份:
    2024
  • 资助金额:
    $ 23.34万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346198
  • 财政年份:
    2024
  • 资助金额:
    $ 23.34万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346197
  • 财政年份:
    2024
  • 资助金额:
    $ 23.34万
  • 项目类别:
    Standard Grant
DULCE (Diabetes InqUiry Through a Learning Collaborative Experience)
DULCE(通过学习协作体验进行糖尿病查询)
  • 批准号:
    10558119
  • 财政年份:
    2023
  • 资助金额:
    $ 23.34万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了