Understanding Smooth Structures via Regular Homotopy of Surfaces in 4-Manifolds

通过 4 流形中曲面的正同伦了解光滑结构

基本信息

  • 批准号:
    2204367
  • 负责人:
  • 金额:
    $ 16.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

The classification of smooth structures on 4-dimensional topological spaces is surprisingly subtle and complex, and far from understood. Lower dimensions (1, 2, and 3) do not have enough room for interesting problems to arise, while there is ample space to resolve them in higher dimensions (above 4). A consequence of this is that many well-known questions remain unanswered only smoothly in dimension 4, such as the Poincaré and Schönflies conjectures first posed in 1904 and 1908, respectively. The primary goal of this project is to advance the mathematical techniques and machinery necessary for the eventual resolution of these outstanding problems. This will be achieved by studying relatively "simple" smooth 4-manifolds and their submanifolds up to various notions of equivalence, through manipulating surfaces within these manifolds and understanding limitations on how these surfaces intersect and embed. As a broader impact, the PI is passionately involved with the Prison Teaching Initiative (PTI) at Princeton University, a program recruiting volunteer graduate students, postdocs, and faculty to teach college courses to incarcerated students in New Jersey Department of Corrections institutions. The PI is actively working with the PTI to co-develop a new math course for non-math majors to be offered as part of the BA curriculum, examining legal cases in which mathematics has been used (both correctly and incorrectly) in the courtroom. The PI is also designing and co-teaching a course in which students learn basic knot theory by using it to model circus arts such as aerial acrobatics, juggling, and tightrope walking. The PI is currently working with undergraduate students to compile their insights and observations from the first iteration of this course, with the goal of publishing these results in an undergraduate journal.The classification of closed, simply-connected 4-manifolds up to homeomorphism is well understood, due to groundbreaking work of Freedman from the 80's. The goal of this research project is to further understand the difference between the smooth and topological categories in dimension 4. Examples of compact topological 4-manifolds admitting infinitely many distinct smooth structures were first produced by Friedman and Morgan, using the work of Donaldson. In contrast, compact topological manifolds of dimension other than four admit at most finitely many smooth structures. The PI is interested in developing concrete and useful methods of relating pairs of smooth 4-manifolds that are homeomorphic but not diffeomorphic. In particular, the project will focus on (1) smooth 4-manifolds up to "stable" diffeomorphism, i.e. modulo connected summing with copies of the product S^2 × S^2, (2) the diffeomorphism types of topological 4-balls that embed in the standard 4-sphere, and (3) embeddings of contractible manifolds called corks up to regular homotopy and topological isotopy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
4 维拓扑空间上的平滑结构的分类令人惊讶地微妙和复杂,并且远未被理解。较低的维度(1、2 和 3)没有足够的空间来产生有趣的问题,但有足够的空间来解决。其结果是,许多众所周知的问题在 4 维中仍然没有得到顺利解答,例如 1904 年首次提出的庞加莱猜想和舍恩弗利斯猜想。该项目的主要目标是推进最终解决这些突出问题所需的数学技术和机制,这将通过研究相对“简单”的光滑 4 流形及其子流形到各种概念来实现。通过操纵这些流形内的表面并了解这些表面如何相交和嵌入的局限性,PI 热衷于参与普林斯顿大学的监狱教学计划 (PTI)。大学,一个招募志愿者研究生、博士后和教师的项目,为新泽西州惩教署机构中的被监禁学生教授大学课程。PI 正在积极与 PTI 合作,为非数学专业共同开发一门新的数学课程。作为文学学士课程的一部分,PI 还设计和共同教授一门课程,学生通过使用数学来学习基本的结理论。模型马戏艺术,如空中杂技、杂耍和走钢丝,PI 目前正在与本科生合作,汇编他们对本课程第一次迭代的见解和观察,目标是在本科生期刊上发表这些结果。由于 Freedman 在 80 年代的开创性工作,封闭、单连通 4 流形直至同胚已得到很好的理解。该研究项目的目标是进一步了解光滑拓扑和拓扑之间的差异。维度 4 中的类别。允许无限多个不同光滑结构的紧致拓扑 4 流形的示例首先由弗里德曼和摩根利用唐纳森的工作提出,相比之下,除了四维之外的紧致拓扑流形最多允许有限多个光滑结构。 PI 有兴趣开发具体且有用的方法来关联同胚但非微分同胚的平滑 4 流形对,特别是,该项目将重点关注 (1) 平滑。 4-流形达到“稳定”微分同胚,即与乘积 S^2 × S^2 的副本进行模连接求和,(2) 嵌入标准 4-球中的拓扑 4-球的微分同胚类型,以及 (3 )称为软木塞的可收缩流形的嵌入达到正则同伦和拓扑同位素。该奖项反映了 NSF 的法定使命,并被视为值得通过使用基金会的智力优点和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hannah Schwartz其他文献

Perinatal Mental Healthcare Needs Among Women at a Community Hospital.
社区医院妇女的围产期心理保健需求。
Translating developmental origins of health and disease in practice: health care providers’ perspectives
将健康和疾病的发展起源转化为实践:医疗保健提供者的观点

Hannah Schwartz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

分段光滑系统的分岔结构及动力学行为研究
  • 批准号:
    12372012
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
Z^d随机光滑作用的熵和不稳定维数的乘积结构
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
浅海下结构声辐射预报的高阶光滑有限元-非共面等效源联合方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
非光滑连接结构振动功率流模型及其表征的隔振性能研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目
考虑典型非光滑现象张拉整体结构分析的模型与算法研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Metabolic reprogramming of endothelial precursor cells in subretinal fibrosis
视网膜下纤维化中内皮前体细胞的代谢重编程
  • 批准号:
    10752924
  • 财政年份:
    2023
  • 资助金额:
    $ 16.9万
  • 项目类别:
Mechanotransduction via LIM Domain Protein Mechanosensing
通过 LIM 结构域蛋白机械传感进行机械转导
  • 批准号:
    10735689
  • 财政年份:
    2023
  • 资助金额:
    $ 16.9万
  • 项目类别:
Piezo-1 & 2’s role in murine intestinal muscularis cells of the SIP syncytium
压电1
  • 批准号:
    10587233
  • 财政年份:
    2023
  • 资助金额:
    $ 16.9万
  • 项目类别:
Age-related Changes in the Pulmonary Artery
肺动脉与年龄相关的变化
  • 批准号:
    10689318
  • 财政年份:
    2022
  • 资助金额:
    $ 16.9万
  • 项目类别:
Rigid Structures and Statistical Properties of Smooth Systems
光滑系统的刚性结构和统计特性
  • 批准号:
    2154796
  • 财政年份:
    2022
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了