Rigid Structures and Statistical Properties of Smooth Systems

光滑系统的刚性结构和统计特性

基本信息

  • 批准号:
    2154796
  • 负责人:
  • 金额:
    $ 37.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

The aim of this project is to discover new phenomena in the area of dynamical systems. Dynamical systems ("dynamics," for short) is the study of motion, and in particular motion that is dictated by an unchanging set of rules, such as the forces controlling planetary motion. Well-known experimental phenomena in dynamics such as chaotic trajectories combined with stable motion have been observed experimentally but are far from being fully understood from a theoretical perspective. The project will address several themes. The first is the stability of dynamical systems - that is, how small perturbations in initial conditions and even in the rules themselves affect the outcome of the evolution. Understanding robust mechanisms for stability is a fundamental pursuit, and the investigator has already discovered several novel such mechanisms. The second theme is genericity, or loosely to understand what dynamical features are present in a typical system. The third theme is rigidity, the study of symmetries of dynamical systems and those systems with optimal symmetries, the so-called ideal crystals of dynamics. An important aspect of the project is to further interaction between mathematical and adjacent scientific communities, such as physics. The PI has already collaborated on questions surrounding the design of particle accelerators and is currently collaborating with a physicist on studying the quantum dynamics behind the emergence of black holes. Furthermore, the PI has given several public lectures on dynamics and has written in the popular press about the work of mathematicians. The PI will expand these activities in the coming years. The project provides research training opportunities for undergraduate and graduate students.This project considers questions in smooth dynamical systems all the way from a general perspective, in particular those about genericity of certain foliation dynamics, to a local one, focused on the rigidity of specific families of group actions. These questions are motivated by well-known conjectures, but also by the desire to discover and explore new dynamical phenomena. The first circle of questions centers around Boltzmann’s original ergodic hypothesis as well as the modern and related conjectures of Pugh and Shub about stable ergodicity. The basic question they address is when one might expect a dynamical system to be ergodic. An important question that remains open is the symplectic version of the C1 Pugh-Shub conjecture, which the investigator will attack. The strategy to prove this conjecture involves interesting and timely aspects of the study of hyperbolic and partially hyperbolic dynamics and expanding foliations. A second project investigates the topological and statistical properties of the unstable foliations of partially hyperbolic systems, and in particular Anosov diffeomorphisms with a partially hyperbolic splitting. A third project concerns the rigidity properties of partially hyperbolic abelian actions. Here the action of the su-holonomy group plays an important role: in the actions considered, the joint action of the ambient, partially hyperbolic dynamics and the su-holonomy group are constrained by certain solvable groups for which known rigidity results described above hold.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目的是发现动态系统领域的新现象。动态系统(简称“动力学”)是运动的研究,特别是由一组不变的规则(例如控制行星运动的力)决定的。已经在实验中观察到了众所周知的实验现象,例如混沌轨迹和稳定运动的混合轨迹,但从理论的角度来看远未完全理解。项目首先是动态系统的稳定性 - 即,在初始条件甚至规则本身中的扰动程度很小,也会影响进化的结果。了解稳定的强大机制是一种基本追求,研究者已经发现了几种新颖的机制。第二个主题是通用,或者松散地了解典型系统中存在哪些动态功能。第三个主题是刚性,对动态系统对称性的研究以及具有最佳对称性的系统,即所谓的理想动力学晶体。该项目的一个重要方面是在数学和相邻科学界(例如物理学)之间进一步相互作用。 PI已经在围绕粒子加速器设计的问题上进行了合作,目前正在与物理学家合作研究黑洞出现背后的量子动态。此外,PI还为动态提供了几次公开演讲,并在流行媒体上写了有关数学家的工作。 PI将在未来几年扩大这些活动。该项目为本科生和研究生提供了研究培训机会。该项目从一般的角度,尤其是关于某些叶面动力的一般性的人,尤其是那些侧重于本地群体的问题,都关注集体行动的特定家庭的刚性,从一般的角度,尤其是关于某些叶面动力的一般性的问题,尤其是那些涉及一般性的培训机会。这些问题是出于众所周知的猜想的动机,也是出于发现和探索新的动态现象的愿望。第一个问题的圈子围绕着鲍尔茨曼的原始奇异假说,以及关于稳定的真诚性的现代和相关的猜想。他们解决的基本问题是,何时可能期望动态系统是千古的。仍然开放的一个重要问题是C1 PUGH-SHUB猜想的符合性版本,研究人员将攻击。证明这一概念的策略涉及双曲​​线和部分双曲动力学研究以及扩大叶子的有趣及时的方面。第二个项目调查了部分双曲系统不稳定叶子的拓扑和统计特性,尤其是Anosov的差异性,并具有部分双曲线分裂。第三个项目涉及部分双曲线阿贝尔行动的僵化特性。在这里,SU-SOLONOMAY小组的行动起着重要的作用:在所考虑的行动中,环境,部分双曲动力和SU-So-Solononomy组的共同行动受到某些可解决的群体的约束,上面描述的已知刚性结果持有。该奖项反映了NSF的法定任务,反映了通过使用基金会的智力综述和宽阔的影响来评估支持的珍贵的支​​持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Absolute continuity, Lyapunov exponents, and rigidity II: systems with compact center leaves
绝对连续性、李亚普诺夫指数和刚度 II:具有紧凑中心叶的系统
  • DOI:
    10.1017/etds.2021.42
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    AVILA, A.;VIANA, MARCELO;WILKINSON, A.
  • 通讯作者:
    WILKINSON, A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anne Wilkinson其他文献

The Effectiveness of a Tailored Faculty Development Program for Undergraduate Mentoring and Its Impact on Mentor’s Perceptions: A Mixed Methods Study
本科生导师定制教师发展计划的有效性及其对导师看法的影响:混合方法研究
  • DOI:
    10.7759/cureus.58863
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Smita Pakhmode;Yamini V. Pusdekar;Madhur Gupta;Anne Wilkinson;S. Uppu;Sheel Wasnik
  • 通讯作者:
    Sheel Wasnik
How Graduate Interior Design Programs Prepare Emerging Educators to Teach
室内设计研究生课程如何为新兴教育工作者做好教学准备
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anne Wilkinson
  • 通讯作者:
    Anne Wilkinson
Palliative Care Nursing
姑息治疗护理
  • DOI:
    10.1891/9780826127198.0001
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anne Wilkinson;Deborah Witt Sherman;Tonie Metheny;M. Matzo
  • 通讯作者:
    M. Matzo
The Histopathological Spectrum of Scrotal Lesions in a Tertiary Care Hospital: A Cross-Sectional Study
三级医院阴囊病变的组织病理学谱:横断面研究
  • DOI:
    10.7759/cureus.52767
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Apara Desai;Anne Wilkinson
  • 通讯作者:
    Anne Wilkinson
Capitated Risk‐Bearing Managed Care Systems Could Improve End‐of‐Life Care
按人头承担风险的管理式医疗系统可以改善临终关怀
  • DOI:
    10.1111/j.1532-5415.1998.tb01047.x
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Joanne Lynn;Anne Wilkinson;F. Cohn;Stanley B. Jones
  • 通讯作者:
    Stanley B. Jones

Anne Wilkinson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anne Wilkinson', 18)}}的其他基金

Ergodicity, Rigidity, and the Interplay Between Chaotic and Regular Dynamics
遍历性、刚性以及混沌动力学和规则动力学之间的相互作用
  • 批准号:
    1900411
  • 财政年份:
    2019
  • 资助金额:
    $ 37.57万
  • 项目类别:
    Standard Grant
INSTABILITIES IN DYNAMICAL SYSTEMS
动态系统的不稳定性
  • 批准号:
    1500897
  • 财政年份:
    2015
  • 资助金额:
    $ 37.57万
  • 项目类别:
    Standard Grant
Robust and generic mechanisms in smooth dynamics
平稳动力学中稳健且通用的机制
  • 批准号:
    1402852
  • 财政年份:
    2014
  • 资助金额:
    $ 37.57万
  • 项目类别:
    Continuing Grant
Conference "From Dynamics to Complexity"
“从动态到复杂性”会议
  • 批准号:
    1201398
  • 财政年份:
    2012
  • 资助金额:
    $ 37.57万
  • 项目类别:
    Standard Grant
Partial hyperbolicity and rigidity
部分双曲性和刚性
  • 批准号:
    1316534
  • 财政年份:
    2012
  • 资助金额:
    $ 37.57万
  • 项目类别:
    Continuing Grant
Partial hyperbolicity and rigidity
部分双曲性和刚性
  • 批准号:
    1001727
  • 财政年份:
    2010
  • 资助金额:
    $ 37.57万
  • 项目类别:
    Continuing Grant
Partial Hyperbolicity and the Structure of Diffeomorphism Groups
偏双曲性和微分同胚群的结构
  • 批准号:
    0701018
  • 财政年份:
    2007
  • 资助金额:
    $ 37.57万
  • 项目类别:
    Continuing Grant
International Workshop on Global Dynamics beyond Uniform Hyperbolicity
超越统一双曲性的全球动力学国际研讨会
  • 批准号:
    0552282
  • 财政年份:
    2006
  • 资助金额:
    $ 37.57万
  • 项目类别:
    Standard Grant
Partial Hyperbolicity and Rigidity
部分双曲性和刚性
  • 批准号:
    0401326
  • 财政年份:
    2005
  • 资助金额:
    $ 37.57万
  • 项目类别:
    Continuing Grant
Conference on Robustness and Partial Hyperbolicity
鲁棒性和部分双曲性会议
  • 批准号:
    0335551
  • 财政年份:
    2003
  • 资助金额:
    $ 37.57万
  • 项目类别:
    Standard Grant

相似国自然基金

基于身份保持、统计挖掘与结构建模的鲁棒人脸复原方法研究
  • 批准号:
    62311530100
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
连续语音中短语结构与序列统计特征的神经编码研究
  • 批准号:
    32300856
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
结构化模型的分布式学习:复杂度、隐私与统计推断
  • 批准号:
    12371291
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目
领域自适应中分布对齐和结构保持的统计与几何方法研究
  • 批准号:
    62306343
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
多重结构数据的多模型/无模型统计分析与因果推断
  • 批准号:
    12371281
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目

相似海外基金

PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
  • 批准号:
    EP/Z000599/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.57万
  • 项目类别:
    Research Grant
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
  • 批准号:
    10714930
  • 财政年份:
    2023
  • 资助金额:
    $ 37.57万
  • 项目类别:
Assembly and re-alignment of HLA genomic region and its implication for fine-mapping suicidality in African descent population
HLA基因组区域的组装和重新排列及其对非洲人后裔自杀倾向精细定位的意义
  • 批准号:
    10797122
  • 财政年份:
    2023
  • 资助金额:
    $ 37.57万
  • 项目类别:
Revealing and Resolving Institutional Racism in the NICU
揭示并解决新生儿重症监护病房中的制度性种族主义
  • 批准号:
    10743828
  • 财政年份:
    2023
  • 资助金额:
    $ 37.57万
  • 项目类别:
Stimulatory state specific genetic regulatory signatures at diabetes GWAS signals
糖尿病 GWAS 信号的刺激状态特异性基因调控特征
  • 批准号:
    10678085
  • 财政年份:
    2023
  • 资助金额:
    $ 37.57万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了