Rigid Structures and Statistical Properties of Smooth Systems
光滑系统的刚性结构和统计特性
基本信息
- 批准号:2154796
- 负责人:
- 金额:$ 37.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The aim of this project is to discover new phenomena in the area of dynamical systems. Dynamical systems ("dynamics," for short) is the study of motion, and in particular motion that is dictated by an unchanging set of rules, such as the forces controlling planetary motion. Well-known experimental phenomena in dynamics such as chaotic trajectories combined with stable motion have been observed experimentally but are far from being fully understood from a theoretical perspective. The project will address several themes. The first is the stability of dynamical systems - that is, how small perturbations in initial conditions and even in the rules themselves affect the outcome of the evolution. Understanding robust mechanisms for stability is a fundamental pursuit, and the investigator has already discovered several novel such mechanisms. The second theme is genericity, or loosely to understand what dynamical features are present in a typical system. The third theme is rigidity, the study of symmetries of dynamical systems and those systems with optimal symmetries, the so-called ideal crystals of dynamics. An important aspect of the project is to further interaction between mathematical and adjacent scientific communities, such as physics. The PI has already collaborated on questions surrounding the design of particle accelerators and is currently collaborating with a physicist on studying the quantum dynamics behind the emergence of black holes. Furthermore, the PI has given several public lectures on dynamics and has written in the popular press about the work of mathematicians. The PI will expand these activities in the coming years. The project provides research training opportunities for undergraduate and graduate students.This project considers questions in smooth dynamical systems all the way from a general perspective, in particular those about genericity of certain foliation dynamics, to a local one, focused on the rigidity of specific families of group actions. These questions are motivated by well-known conjectures, but also by the desire to discover and explore new dynamical phenomena. The first circle of questions centers around Boltzmann’s original ergodic hypothesis as well as the modern and related conjectures of Pugh and Shub about stable ergodicity. The basic question they address is when one might expect a dynamical system to be ergodic. An important question that remains open is the symplectic version of the C1 Pugh-Shub conjecture, which the investigator will attack. The strategy to prove this conjecture involves interesting and timely aspects of the study of hyperbolic and partially hyperbolic dynamics and expanding foliations. A second project investigates the topological and statistical properties of the unstable foliations of partially hyperbolic systems, and in particular Anosov diffeomorphisms with a partially hyperbolic splitting. A third project concerns the rigidity properties of partially hyperbolic abelian actions. Here the action of the su-holonomy group plays an important role: in the actions considered, the joint action of the ambient, partially hyperbolic dynamics and the su-holonomy group are constrained by certain solvable groups for which known rigidity results described above hold.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目的是发现动力系统领域的新现象动力系统(简称“动力学”)是对运动的研究,特别是由一组不变的规则决定的运动,例如。作为控制行星运动的众所周知的实验现象,例如混沌轨迹与稳定运动相结合,已经通过实验观察到,但从理论角度来看还远未得到充分理解。动力系统 - 也就是说,初始条件甚至规则本身的微小扰动如何影响演化的结果是一项基本追求,研究人员已经发现了几种新颖的此类机制。第三个主题是刚性,研究动力系统的对称性和具有最佳对称性的系统,即所谓的理想动力学晶体。数学和邻近的科学界, PI 已经就有关粒子加速器设计的问题进行了合作,目前正在与一位物理学家合作研究黑洞出现背后的量子动力学。 PI 将在未来几年扩大这些活动,为本科生和研究生提供研究培训机会。该项目从总体角度考虑平滑动力系统中的问题。特别是那些关于某些叶状动力学的通用性的问题,集中于特定群体行为的刚性。这些问题是由众所周知的猜想引起的,但也是出于发现和探索新的动力学现象的愿望。一系列问题围绕着玻尔兹曼最初的遍历假设以及 Pugh 和 Shub 关于稳定遍历性的现代相关猜想,他们解决的基本问题是人们何时期望动态系统存在。一个仍然悬而未决的重要问题是 C1 Pugh-Shub 猜想的辛版本,研究人员将对此猜想进行证明,该策略涉及双曲和部分双曲动力学以及扩展叶的研究的有趣且及时的方面。第二个项目研究部分双曲系统不稳定叶的拓扑和统计特性,特别是具有部分双曲分裂的阿诺索夫微分同胚。第三个项目涉及刚性特性。这里,su-完整群的作用起着重要作用:在所考虑的动作中,环境、部分双曲动力学和 su-完整群的联合作用受到某些已知可解群的约束。上述刚性结果成立。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Absolute continuity, Lyapunov exponents, and rigidity II: systems with compact center leaves
绝对连续性、李亚普诺夫指数和刚度 II:具有紧凑中心叶的系统
- DOI:10.1017/etds.2021.42
- 发表时间:2022
- 期刊:
- 影响因子:0.9
- 作者:AVILA, A.;VIANA, MARCELO;WILKINSON, A.
- 通讯作者:WILKINSON, A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anne Wilkinson其他文献
The Effectiveness of a Tailored Faculty Development Program for Undergraduate Mentoring and Its Impact on Mentor’s Perceptions: A Mixed Methods Study
本科生导师定制教师发展计划的有效性及其对导师看法的影响:混合方法研究
- DOI:
10.7759/cureus.58863 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Smita Pakhmode;Yamini V. Pusdekar;Madhur Gupta;Anne Wilkinson;S. Uppu;Sheel Wasnik - 通讯作者:
Sheel Wasnik
How Graduate Interior Design Programs Prepare Emerging Educators to Teach
室内设计研究生课程如何为新兴教育工作者做好教学准备
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Anne Wilkinson - 通讯作者:
Anne Wilkinson
Palliative Care Nursing
姑息治疗护理
- DOI:
10.1891/9780826127198.0001 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Anne Wilkinson;Deborah Witt Sherman;Tonie Metheny;M. Matzo - 通讯作者:
M. Matzo
The Histopathological Spectrum of Scrotal Lesions in a Tertiary Care Hospital: A Cross-Sectional Study
三级医院阴囊病变的组织病理学谱:横断面研究
- DOI:
10.7759/cureus.52767 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Apara Desai;Anne Wilkinson - 通讯作者:
Anne Wilkinson
Capitated Risk‐Bearing Managed Care Systems Could Improve End‐of‐Life Care
按人头承担风险的管理式医疗系统可以改善临终关怀
- DOI:
10.1111/j.1532-5415.1998.tb01047.x - 发表时间:
1998 - 期刊:
- 影响因子:6.3
- 作者:
Joanne Lynn;Anne Wilkinson;F. Cohn;Stanley B. Jones - 通讯作者:
Stanley B. Jones
Anne Wilkinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anne Wilkinson', 18)}}的其他基金
Ergodicity, Rigidity, and the Interplay Between Chaotic and Regular Dynamics
遍历性、刚性以及混沌动力学和规则动力学之间的相互作用
- 批准号:
1900411 - 财政年份:2019
- 资助金额:
$ 37.57万 - 项目类别:
Standard Grant
Robust and generic mechanisms in smooth dynamics
平稳动力学中稳健且通用的机制
- 批准号:
1402852 - 财政年份:2014
- 资助金额:
$ 37.57万 - 项目类别:
Continuing Grant
Conference "From Dynamics to Complexity"
“从动态到复杂性”会议
- 批准号:
1201398 - 财政年份:2012
- 资助金额:
$ 37.57万 - 项目类别:
Standard Grant
Partial Hyperbolicity and the Structure of Diffeomorphism Groups
偏双曲性和微分同胚群的结构
- 批准号:
0701018 - 财政年份:2007
- 资助金额:
$ 37.57万 - 项目类别:
Continuing Grant
International Workshop on Global Dynamics beyond Uniform Hyperbolicity
超越统一双曲性的全球动力学国际研讨会
- 批准号:
0552282 - 财政年份:2006
- 资助金额:
$ 37.57万 - 项目类别:
Standard Grant
Conference on Robustness and Partial Hyperbolicity
鲁棒性和部分双曲性会议
- 批准号:
0335551 - 财政年份:2003
- 资助金额:
$ 37.57万 - 项目类别:
Standard Grant
相似国自然基金
立方金属板带晶界梯度区形变结构关联统计研究
- 批准号:52371022
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
连续语音中短语结构与序列统计特征的神经编码研究
- 批准号:32300856
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于身份保持、统计挖掘与结构建模的鲁棒人脸复原方法研究
- 批准号:62311530100
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
曲面上有序结构与拓扑缺陷的统计物理研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
宇宙大尺度结构统计函数的统计性质研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
- 批准号:
EP/Z000599/1 - 财政年份:2024
- 资助金额:
$ 37.57万 - 项目类别:
Research Grant
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
- 批准号:
10714930 - 财政年份:2023
- 资助金额:
$ 37.57万 - 项目类别:
Assembly and re-alignment of HLA genomic region and its implication for fine-mapping suicidality in African descent population
HLA基因组区域的组装和重新排列及其对非洲人后裔自杀倾向精细定位的意义
- 批准号:
10797122 - 财政年份:2023
- 资助金额:
$ 37.57万 - 项目类别:
Revealing and Resolving Institutional Racism in the NICU
揭示并解决新生儿重症监护病房中的制度性种族主义
- 批准号:
10743828 - 财政年份:2023
- 资助金额:
$ 37.57万 - 项目类别:
Stimulatory state specific genetic regulatory signatures at diabetes GWAS signals
糖尿病 GWAS 信号的刺激状态特异性基因调控特征
- 批准号:
10678085 - 财政年份:2023
- 资助金额:
$ 37.57万 - 项目类别: