CISE-MSI: RCBP-RF: SaTC: Privacy Preserving Models Leveraging Mobility Data for Public Health

CISE-MSI:RCBP-RF:SaTC:利用移动数据促进公共卫生的隐私保护模型

基本信息

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).The use of health applications on mobile devices is becoming increasingly popular. With that popularity comes a desire to use the mobility data that is generated for various public health purposes, such as contact tracing during COVID-19. It is also used in more complex applications that use machine learning to infer health risks. On one hand, these models promise a transformative impact on targeted public health interventions. On the other hand, results from these models could compromise the privacy of an individual’s health status without directly using health data. Even when the mobility data is de-identified, privacy can be compromised when physical observations of persons’ locations augment the models’ results. People who are considered visible minorities are particularly vulnerable if they come from groups with a disproportionate prevalence of a certain disease. There are ways to adjust privacy techniques that can help mitigate privacy risks, however, they could compromise the accuracy of the models. There is a need for solutions that can yield effective public health models while preserving privacy. Results from this project will be the development of infection spread models that can do just that – give accurate place-based data without compromising privacy for health related applications. The project will use a establish and understanding of effective approaches for co-designing privacy and security techniques with infection spread modeling. These privacy protection approaches would account for potential compromise through physical observations in combination with queries to the models. We will also produce a synthetic population for Northwest Florida designed for efficient updates through data assimilation. Such synthetic-data-driven models have the potential to yield accurate results while preserving privacy. The impact on research and education will be seen in the developing of research capacity at FAMU as well as through interdisciplinary research tasks to be conducted by undergraduate students that are traditionally underrepresented in computing. Results from this project will help expand the pathways into computing fields and other interdisciplinary careersThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金来源于《2021 年美国救援计划法案》(公法 117-2)。随着移动设备的普及,人们希望使用移动数据。一方面,这些模型有望对有针对性的公共卫生干预措施产生变革性影响。另一方面,这些模型的结果可能会在不直接使用健康数据的情况下损害个人健康状况的隐私,即使移动数据被取消识别,当对人员位置的物理观察增强了模型的结果时,隐私也会受到损害。如果少数群体来自某种疾病患病率不成比例的群体,那么他们就特别容易受到影响。有一些方法可以调整隐私技术,有助于减轻隐私风险,但它们可能会损害模型的准确性,因此需要解决方案。可以产生有效的公共卫生模型,同时保护隐私。该项目将开发感染传播模型,该模型可以做到这一点——在不损害健康相关应用程序隐私的情况下提供准确的基于地点的数据。该项目将使用建立和理解有效方法来共同设计感染的隐私和安全技术。这些隐私保护方法将通过物理观察与模型查询相结合来解决潜在的妥协问题,我们还将为佛罗里达州西北部生成一个合成群体,旨在通过数据同化进行有效更新。在保护隐私的同时产生准确结果的潜力。研究和教育将体现在 FAMU 研究能力的发展以及由传统上在计算机领域代表性不足的本科生进行的跨学科研究任务中,该项目的结果将有助于拓展进入计算机领域和其他跨学科职业的途径。授予 NSF 的法定使命,并通过评估反映使用基金会的智力优点和更广泛的影响审查标准,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigating Gender and Racial Bias in ELECTRA
调查 ELECTRA 中的性别和种族偏见
  • DOI:
    10.1109/csci58124.2022.00027
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Taeb, Maryam;Torres, Yonathan;Chi, Hongmei;Bernadin, Shonda
  • 通讯作者:
    Bernadin, Shonda
Forecasting COVID-19 Hotspots in Florida Public Schools: A Machine Learning Approach
预测佛罗里达州公立学校的 COVID-19 热点:机器学习方法
  • DOI:
    10.1109/bigdata59044.2023.10386102
  • 发表时间:
    2023-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peng, Mingming;Ali, Askal Ayalew;Chi, Hongmei
  • 通讯作者:
    Chi, Hongmei
Ontology-guided attribute learning to accelerate certification for developing new printing processes
本体引导的属性学习可加速开发新印刷工艺的认证
  • DOI:
    10.1080/24725854.2023.2263786
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Yhdego, Tsegai O.;Wang, Hui;Yu, Zhibin;Chi, Hongmei
  • 通讯作者:
    Chi, Hongmei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hongmei Chi其他文献

Ontology-guided Attribute Learning to Accelerate Certification for Developing New Printing Processes
本体引导的属性学习加速开发新印刷工艺的认证
  • DOI:
    10.1080/24725854.2023.2263786
  • 发表时间:
    2023-09-27
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Tsegai O. Yhdego;Hongya Wang;Zhibin Yu;Hongmei Chi
  • 通讯作者:
    Hongmei Chi
Encrypted secure polar coding scheme for general two-way wiretap channel
通用双向窃听通道的加密安全极性编码方案
  • DOI:
    10.1049/iet-ifs.2018.5472
  • 发表时间:
    2019-06-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yizhi Zhao;Shiwei Xu;Hongmei Chi
  • 通讯作者:
    Hongmei Chi
Polar Coding with Chaos and Frozen Bits Operation for Wiretap Channel
用于窃听通道的具有混沌和冻结位操作的极性编码
Secure Polar Coding for Adversarial Wiretap Channel
用于对抗窃听通道的安全极性编码
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yizhi Zhao;Hongmei Chi
  • 通讯作者:
    Hongmei Chi
Strong Security Polar Coding with Delayed Wiretap Channel State Information
  • DOI:
  • 发表时间:
    2018-12-29
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yizhi Zhao;Hongmei Chi
  • 通讯作者:
    Hongmei Chi

Hongmei Chi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hongmei Chi', 18)}}的其他基金

Collaborative Research: Education DCL: EAGER: Harnessing the Power of Large Language Models in Digital Forensics Education at MSI and HBCU
合作研究:教育 DCL:EAGER:在 MSI 和 HBCU 的数字取证教育中利用大型语言模型的力量
  • 批准号:
    2333950
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Excellence in Research: Collaborative Research: Detecting Vulnerabilities in Internet of Things with Deep Learning
卓越研究:协作研究:利用深度学习检测物联网漏洞
  • 批准号:
    2101161
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: Developing Instructional Laboratories for Blockchain Security Applications
合作研究:SaTC:EDU:开发区块链安全应用教学实验室
  • 批准号:
    2104519
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: Developing Instructional Laboratories for Blockchain Security Applications
合作研究:SaTC:EDU:开发区块链安全应用教学实验室
  • 批准号:
    2104519
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

外泌体MSI1调控去泛素化酶USP28诱导肝Kupffer细胞极化在乳腺癌肝转移中的作用和机制研究
  • 批准号:
    82303449
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于MALDI-MSI技术的我国白头翁属药材显微质谱成像鉴定研究
  • 批准号:
    82373999
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
探索MSI-H肿瘤内源TREX1调控抗肿瘤免疫的机制及相关免疫治疗策略开发
  • 批准号:
    82371848
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
MSI1/circBRCA1调控LATS1mRNA稳定性促进BRCA1突变的卵巢癌铂敏感的分子机理
  • 批准号:
    82303588
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二维MSi2N4半导体点缺陷的电子显微学研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
  • 批准号:
    2318573
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research:CISE-MSI:RCBP-RF:CNS:Orchestration of Network Slicing for 5G-Enabled IoT Devices Using Reinforcement Learning
合作研究:CISE-MSI:RCBP-RF:CNS:使用强化学习为支持 5G 的物联网设备进行网络切片编排
  • 批准号:
    2318636
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: RCBP-ED: CCRI: TechHouse Partnership to Increase the Computer Engineering Research Expansion at Morehouse College
合作研究:CISE-MSI:RCBP-ED:CCRI:TechHouse 合作伙伴关系,以促进莫尔豪斯学院计算机工程研究扩展
  • 批准号:
    2318704
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CISE-MSI : RCBP-ED: CCF-FET : Improving Reliability and Durability in Phase Change Main Memory (PCM)
CISE-MSI:RCBP-ED:CCF-FET:提高相变主存储器 (PCM) 的可靠性和耐用性
  • 批准号:
    2318553
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CPS: Socially Informed Traffic Signal Control for Improving Near Roadway Air Quality
合作研究:CISE-MSI:RCBP-RF:CPS:用于改善附近道路空气质量的社会知情交通信号控制
  • 批准号:
    2318697
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了