Categorical and Diagrammatic Representation Theory

分类和图解表示理论

基本信息

  • 批准号:
    2201387
  • 负责人:
  • 金额:
    $ 27.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Representation theory is the study of symmetries. Symmetry groups arise frequently in physics (e.g. rotations of a sphere), chemistry (e.g. crystallography), and other scientific fields. Data related to the objects possessing symmetry can often be encoded in an object called a representation. Mathematicians study the relationships between representations, and how bigger representations can be built from simple, indivisible ones, much as a molecule is built from indivisible atoms. Many properties of these simple representations, such as their dimensions, are unknown and the topic of intense research. The representations and their structure can be packaged in a collection called a category. An extremely fruitful tool of the last half century has been to identify categories in representation theory with categories from algebraic geometry, allowing the use of powerful geometric tools. But geometry also has its limits, especially when it comes to matters of explicit computation. In past work, the PI has found new and explicit descriptions of categories from representation theory and geometry, using diagrammatic methods. In diagrammatics, a very large matrix or a structure from geometry could be encoded as a picture and manipulated graphically. These descriptions make once-difficult categories accessible computer algebra systems. Computer calculations performed by the PI's collaborator Williamson have led to the first breakthroughs in computing dimensions of simple representations in decades. The PI will continue to develop diagrammatic methods to study representation theory and geometry, providing explicit constructions of new categories, structures, and tools which are beyond the current scope of other approaches. This project provides research training opportunities for students.More concretely, this proposal will support four related projects. The first is to provide general tools for studying generically semisimple monoidal categories diagrammatically using a cellular basis called the branching basis, akin to several bases previously constructed by the PI and collaborators. These tools will then be applied to the categories of singular Soergel bimodules, representations of symplectic groups, and representations of McKay groups. The second project is to introduce K-theoretic Soergel bimodules and to study their relationship to the quantum geometric Satake equivalence. The third is to produce a generalization of Khovanov-Lauda-Rouquier algebras, which has the potential to categorify other Nichols algebras. The fourth is to study the actions of lie algebras on various important categories, which were previously constructed by the PI and Qi.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
表示理论是对称性的研究。对称组经常出现在物理学(例如球体的旋转),化学(例如晶体学)和其他科学领域。与具有对称的对象有关的数据通常可以在称为表示的对象中编码。数学家研究了表示形式之间的关系,以及如何从简单的,不可分割的形式中建立更大的表示,就像分子是由不可分割的原子构建的一样。这些简单表示的许多属性,例如它们的维度,是未知的,也是激烈研究的主题。表示及其结构可以包装在称为类别的集合中。上半个世纪的一种极其富有成果的工具是识别代表理论中的类别,并具有代数几何形状的类别,从而允许使用强大的几何工具。但是几何也有其限制,尤其是在明确计算的问题上。在过去的工作中,PI使用示意图方法发现了从表示理论和几何形状的类别的新的和明确的描述。在示意图中,可以将非常大的矩阵或几何结构编码为图片并以图形方式进行操纵。这些描述使曾经难以置信的类别可访问的计算机代数系统。 PI合作者威廉姆森(Williamson)执行的计算机计算导致了数十年来简单表示的计算维度的首次突破。 PI将继续开发示意方法来研究表示理论和几何形状,从而提供超出其他方法范围的新类别,结构和工具的明确结构。该项目为学生提供了研究培训机会。更具体地说,该提案将支持四个相关项目。首先是提供通用工具,用于使用称为分支基础的蜂窝基础来示意地研究一般的半神经单体类别,类似于PI和合作者先前构建的几个基础。然后,这些工具将应用于单数Soergel双模型的类别,符号组的表示以及McKay组的表示。第二个项目是引入K理论的soergel双模型,并研究它们与量子几何萨克等效性的关系。第三个是对Khovanov-Lauda-Rouquier代数的概括,该代数有可能对其他Nichols代数进行分类。第四个是研究Lie代数对各种重要类别的行为,这些类别以前是由PI和QI构建的。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估审查标准来通过评估来支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Benjamin Elias其他文献

Novel phosphonated bicyclic frameworks from Diels–Alder reaction as chelating agents of di- and trivalent metal cations
  • DOI:
    10.1016/j.tetlet.2011.07.116
    10.1016/j.tetlet.2011.07.116
  • 发表时间:
    2011-10-05
    2011-10-05
  • 期刊:
  • 影响因子:
  • 作者:
    Elise Villemin;Benjamin Elias;Raphaël Robiette;Koen Robeyns;Marie-France Herent;Jean-Louis Habib-Jiwan;Jacqueline Marchand-Brynaert
    Elise Villemin;Benjamin Elias;Raphaël Robiette;Koen Robeyns;Marie-France Herent;Jean-Louis Habib-Jiwan;Jacqueline Marchand-Brynaert
  • 通讯作者:
    Jacqueline Marchand-Brynaert
    Jacqueline Marchand-Brynaert
Chloride, Bromide, and Iodide Photooxidation in Acetonitrile/Water Mixtures Using Binuclear Iridium(III) Photosensitizers.
使用双核铱 (III) 光敏剂对乙腈/水混合物中的氯化物、溴化物和碘化物进行光氧化。
  • DOI:
    10.1021/acs.inorgchem.3c02648
    10.1021/acs.inorgchem.3c02648
  • 发表时间:
    2023
    2023
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Simon De Kreijger;Benjamin Elias;L. Troian‐Gautier
    Simon De Kreijger;Benjamin Elias;L. Troian‐Gautier
  • 通讯作者:
    L. Troian‐Gautier
    L. Troian‐Gautier
Photoinduced One-Electron Chloride Oxidation in Water Using a Pentacationic Ir(III) Photosensitizer.
使用五阳离子 Ir(III) 光敏剂在水中光诱导单电子氯化物氧化。
Polyphenism of visual and chemical secondary sexually-selected wing traits in the butterfly Bicyclus anynana: How different is the intermediate phenotype?
蝴蝶 Bicyclus annana 视觉和化学次级性选择翅膀特征的多态性:中间表型有何不同?
  • DOI:
    10.1371/journal.pone.0225003
    10.1371/journal.pone.0225003
  • 发表时间:
    2019
    2019
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    D. Muller;Benjamin Elias;L. Collard;Christophe Pels;M. Holveck;C. Nieberding
    D. Muller;Benjamin Elias;L. Collard;Christophe Pels;M. Holveck;C. Nieberding
  • 通讯作者:
    C. Nieberding
    C. Nieberding
共 4 条
  • 1
前往

Benjamin Elias的其他基金

FRG: Collaborative Research: Algebra and Geometry Behind Link Homology
FRG:协作研究:链接同调背后的代数和几何
  • 批准号:
    1800498
    1800498
  • 财政年份:
    2018
  • 资助金额:
    $ 27.7万
    $ 27.7万
  • 项目类别:
    Standard Grant
    Standard Grant
CAREER: Categorical Representation Theory of Hecke Algebras
职业:赫克代数的分类表示论
  • 批准号:
    1553032
    1553032
  • 财政年份:
    2016
  • 资助金额:
    $ 27.7万
    $ 27.7万
  • 项目类别:
    Continuing Grant
    Continuing Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1103862
    1103862
  • 财政年份:
    2011
  • 资助金额:
    $ 27.7万
    $ 27.7万
  • 项目类别:
    Fellowship Award
    Fellowship Award

相似国自然基金

视觉感知准则引导的示意图理解方法
  • 批准号:
    62250066
  • 批准年份:
    2022
  • 资助金额:
    94.00 万元
  • 项目类别:
    专项项目
道路数据自动综合的算法与模型研究
  • 批准号:
    40901192
  • 批准年份:
    2009
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Representation Theory of diagrammatic Hecke category
图解Hecke范畴的表示论
  • 批准号:
    2884599
    2884599
  • 财政年份:
    2023
  • 资助金额:
    $ 27.7万
    $ 27.7万
  • 项目类别:
    Studentship
    Studentship
Diagrammatic and geometric techniques in representation theory
表示论中的图解和几何技术
  • 批准号:
    RGPIN-2018-03974
    RGPIN-2018-03974
  • 财政年份:
    2022
  • 资助金额:
    $ 27.7万
    $ 27.7万
  • 项目类别:
    Discovery Grants Program - Individual
    Discovery Grants Program - Individual
Diagrammatic and geometric techniques in representation theory
表示论中的图解和几何技术
  • 批准号:
    RGPIN-2018-03974
    RGPIN-2018-03974
  • 财政年份:
    2021
  • 资助金额:
    $ 27.7万
    $ 27.7万
  • 项目类别:
    Discovery Grants Program - Individual
    Discovery Grants Program - Individual
Diagrammatic and geometric techniques in representation theory
表示论中的图解和几何技术
  • 批准号:
    RGPIN-2018-03974
    RGPIN-2018-03974
  • 财政年份:
    2020
  • 资助金额:
    $ 27.7万
    $ 27.7万
  • 项目类别:
    Discovery Grants Program - Individual
    Discovery Grants Program - Individual
Diagrammatic and geometric techniques in representation theory
表示论中的图解和几何技术
  • 批准号:
    RGPIN-2018-03974
    RGPIN-2018-03974
  • 财政年份:
    2019
  • 资助金额:
    $ 27.7万
    $ 27.7万
  • 项目类别:
    Discovery Grants Program - Individual
    Discovery Grants Program - Individual