RUI: Next Generation Rare Earth Based Light-Emitters for Solid-State Display & Quantum Information Technology Applications

RUI:用于固态显示的下一代稀土发光体

基本信息

  • 批准号:
    2129183
  • 负责人:
  • 金额:
    $ 44.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The realization of a "smart society" will require advancements in display and quantum computation technologies. Examples of such technologies include microscale color-tunable pixels and the fabrication of systems whose quantum states can be precisely controlled, both of which can be addressed by "trapping" rare earth (RE) elements in a semiconducting host. RE elements can be placed into various environments and retain most of their original atom-like properties, including emission wavelengths and spin states. Generally, RE ions are incorporated in passive, insulating materials. In this project, a team of researchers will study the properties of RE-doped semiconductors fabricated into structures such as diodes, microcavities, and microdisks. The team will explore new ways to manipulate the RE ions by utilizing the strong interaction between the RE ions and other defects within the semiconductor hosts. Overall, this project will serve as the basis for a new generation of RE-doped semiconductor devices that harness quantum mechanical effects to achieve new functionalities such as the control of spins and the manipulation of light emission for quantum information processing and solid-state displays. Through a collaboration between a predominantly undergraduate institution and two research universities in the greater Philadelphia area, this project will also train several undergraduate and graduate students from underrepresented groups for future employment in the quantum information and display industries.Technical description.Single electrically controlled color-tunable LEDs have been previously demonstrated in Eu-doped GaN, which is based on manipulating the state from which the Eu3+ ions emit. However, several details of the defect-specific energy-transfer pathways are still not fully understood. A deeper understanding of this process is crucial for optimizing such LEDs and for realizing controlled atomic emission in other RE-doped systems. The team will also explore whether spin information can be transferred from injected carriers to the RE ions and vice-versa in novel optoelectronic devices. Measurements of optical transition linewidths, radiative lifetimes, and spin coherence times will establish the baseline potential of RE-doped semiconductors for quantum information protocols. With their high efficiency and narrow emission linewidth, Eu-doped GaN and Er-doped GaAs are promising candidates as single quantum emitters. We aim to detect and address individual RE dopants by controlled dilute doping and enhancing the RE ions' radiative rates using photonic structures. Overall, the development of LEDs with full color-tunability will allow for the realization of single-contact RGB micro-LEDs, which will improve the performance of solid-state lighting technology and enable GaN-based active pixel displays. For quantum computation applications, the combination of robust quantum states based on RE ions with the maturity of GaN and GaAs synthesis and nanofabrication technology can enable the rapid development of scalable quantum optoelectronic devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
“智能社会”的实现需要显示和量子计算技术的进步。此类技术的示例包括微型颜色可调像素和可精确控制量子态的系统的制造,这两种技术都可以通过在半导体主体中“捕获”稀土(RE)元素来解决。稀土元素可以放置在各种环境中并保留其大部分原始类原子特性,包括发射波长和自旋态。一般来说,稀土离子被纳入被动绝缘材料中。在该项目中,一组研究人员将研究制成二极管、微腔和微盘等结构的稀土掺杂半导体的特性。该团队将探索利用稀土离子与半导体主体内其他缺陷之间的强相互作用来操纵稀土离子的新方法。总体而言,该项目将作为新一代稀土掺杂半导体器件的基础,该器件利用量子力学效应来实现新功能,例如用于量子信息处理和固态显示器的自旋控制和光发射操纵。通过大费城地区一所以本科为主的机构与两所研究型大学之间的合作,该项目还将培训来自代表性不足群体的几名本科生和研究生,以便将来在量子信息和显示行业就业。技术说明。单电控彩色-可调 LED 先前已在 Eu 掺杂 GaN 中得到证实,其基于操纵 Eu3+ 离子发射的状态。然而,缺陷特异性能量转移途径的几个细节仍未完全了解。更深入地了解这一过程对于优化此类 LED 以及在其他稀土掺杂系统中实现受控原子发射至关重要。该团队还将探索新型光电器件中自旋信息是否可以从注入的载流子转移到稀土离子,反之亦然。光学跃迁线宽、辐射寿命和自旋相干时间的测量将为量子信息协议建立稀土掺杂半导体的基线潜力。凭借其高效率和窄发射线宽,Eu 掺杂 GaN 和 Er 掺杂 GaAs 是单量子发射器的有前途的候选者。我们的目标是通过受控稀掺杂来检测和处理单个稀土掺杂剂,并使用光子结构增强稀土离子的辐射率。总体而言,开发具有全色彩可调性的 LED 将有助于实现单接触 RGB micro-LED,从而提高固态照明技术的性能并实现基于 GaN 的有源像素显示器。对于量子计算应用,基于稀土离子的鲁棒量子态与成熟的GaN和GaAs合成及纳米加工技术相结合,可以实现可扩展量子光电器件的快速开发。该奖项反映了NSF的法定使命,被认为值得支持通过使用基金会的智力优点和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling defect mediated color-tunability in LEDs with Eu-doped GaN-based active layers
对具有 Eu 掺杂 GaN 基有源层的 LED 中缺陷介导的颜色可调性进行建模
  • DOI:
    10.1063/5.0077223
  • 发表时间:
    2022-01-31
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    H. Austin;B. Mitchell;D. Timmerman;J. Tatebayashi;S. Ichikawa;Y. Fujiwara;V. Dierolf
  • 通讯作者:
    V. Dierolf
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brandon Mitchell其他文献

First Step Next: A Best-Evidence Synthesis of Replication Randomized Controlled Trials From 2009 to 2021
下一步:2009 年至 2021 年复制随机对照试验的最佳证据综合
  • DOI:
    10.1177/07419325211068145
  • 发表时间:
    2022-03-02
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    A. Frey;Jason W. Small;H. Walker;Brandon Mitchell;J. Seeley;Edward G. Feil;Jon Lee;S. Forness
  • 通讯作者:
    S. Forness

Brandon Mitchell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brandon Mitchell', 18)}}的其他基金

ExpandQISE: Track 1: Development of Er-doped Semiconductor Nanophotonics to realize Optoelectronic Capabilities for Quantum Information Applications at Telecom Wavelengths
ExpandQISE:轨道 1:开发掺铒半导体纳米光子学以实现电信波长量子信息应用的光电功能
  • 批准号:
    2328540
  • 财政年份:
    2023
  • 资助金额:
    $ 44.96万
  • 项目类别:
    Standard Grant
ExpandQISE: Track 1: Development of Er-doped Semiconductor Nanophotonics to realize Optoelectronic Capabilities for Quantum Information Applications at Telecom Wavelengths
ExpandQISE:轨道 1:开发掺铒半导体纳米光子学以实现电信波长量子信息应用的光电功能
  • 批准号:
    2328540
  • 财政年份:
    2023
  • 资助金额:
    $ 44.96万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1 Acquisition of a Tunable Ultrafast Spectroscopy System at a Primarily Undergraduate Institution to Enhance Undergraduate Training
设备: MRI:第一轨道在本科院校采购可调谐超快光谱系统,以加强本科生培训
  • 批准号:
    2319135
  • 财政年份:
    2023
  • 资助金额:
    $ 44.96万
  • 项目类别:
    Standard Grant
Increasing the Persistence of STEM Majors through Nanoscience-Themed Activities that Support Academic, Professional, and Personal Engagement and Development
通过支持学术、专业和个人参与和发展的纳米科学主题活动,提高 STEM 专业的持久性
  • 批准号:
    2028230
  • 财政年份:
    2021
  • 资助金额:
    $ 44.96万
  • 项目类别:
    Standard Grant
RUI: Fate and Impact of CuPro 5000 and Kocide 3000: A Microcosm Based Study
RUI:CuPro 5000 和 Kocide 3000 的命运和影响:基于微观的研究
  • 批准号:
    1748439
  • 财政年份:
    2018
  • 资助金额:
    $ 44.96万
  • 项目类别:
    Standard Grant

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:
SoLoMo情形下“下一个最佳购物建议”(NBO)对消费者决策的影响机制研究
  • 批准号:
    71302093
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RUI: Next-Generation Numerical Relativity for Future Gravitational-Wave Observatories
RUI:未来引力波天文台的下一代数值相对论
  • 批准号:
    2208014
  • 财政年份:
    2022
  • 资助金额:
    $ 44.96万
  • 项目类别:
    Standard Grant
RUI: Development of Next-Generation Drift-Time Ion Mobility Spectrometry through the Application of Pulsed Ionization and Voltage Sweep Methodologies
RUI:通过应用脉冲电离和电压扫描方法开发下一代漂移时间离子淌度光谱法
  • 批准号:
    2203666
  • 财政年份:
    2022
  • 资助金额:
    $ 44.96万
  • 项目类别:
    Standard Grant
RUI-CHE: Development of Organometallic Complexes for the Next-Generation of Non-Aqueous Redox Flow Batteries
RUI-CHE:开发用于下一代非水氧化还原液流电池的有机金属配合物
  • 批准号:
    2055125
  • 财政年份:
    2021
  • 资助金额:
    $ 44.96万
  • 项目类别:
    Standard Grant
Collaborative Research RUI: CAS: Development of Tripodal Ligands for Next-Generation Rare Earth Element Separations
合作研究 RUI:CAS:开发用于下一代稀土元素分离的三足配体
  • 批准号:
    2102381
  • 财政年份:
    2021
  • 资助金额:
    $ 44.96万
  • 项目类别:
    Standard Grant
Collaborative Research RUI: CAS: Development of Tripodal Ligands for Next-Generation Rare Earth Element Separations
合作研究 RUI:CAS:开发用于下一代稀土元素分离的三足配体
  • 批准号:
    2102576
  • 财政年份:
    2021
  • 资助金额:
    $ 44.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了