ExpandQISE: Track 1: Development of Er-doped Semiconductor Nanophotonics to realize Optoelectronic Capabilities for Quantum Information Applications at Telecom Wavelengths

ExpandQISE:轨道 1:开发掺铒半导体纳米光子学以实现电信波长量子信息应用的光电功能

基本信息

  • 批准号:
    2328540
  • 负责人:
  • 金额:
    $ 79.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Non-technical Abstract: Classical information technologies use optical interconnects to relay information between different media platforms. This is typically done by fiber optics, relaying digital ones and zeros as pulses with light on and off, respectively. For classical technologies, it is not necessary to precisely control how many photons are emitted or detected, only to be able to distinguish bright from dark. Quantum information technologies require quantum interconnects that can transmit single pairs of entangled photons, which is much more challenging. In this regard, a compact electrically-activated source of single photons would be an important advance. One approach is to utilize single photons emitted from individual Erbium (Er) atoms at standard telecommunication wavelengths. The Er atoms must be embedded into a semiconductor host to enable electrical excitation, and Gallium Arsenide (GaAs) is ideal due to its well-established growth and nanofabrication. However, attaining emission only from the Er atoms, rather than the GaAs host, remains a challenge. One way to improve the rate of photon emission from Er atoms is to embed the atoms into nanocavities. The primary objective of this project is to investigate the application of Er-doped GaAs nanocavity devices for QISE, with the ultimate aim of developing an on-chip electrically-pumped single-photon device operating at telecom wavelengths. This project brings together an expert in Rare Earth (RE) physics for classical optoelectronic applications from West Chester University (WCU) and experts in scalable quantum photonic technologies from the University of Delaware (UD). Additionally, this partnership advances a new 3+2 dual degree program where students earn a bachelor's degree in physics from WCU and a master's degree in QISE from UD in five years. This accelerated educational track is designed to support low-income and underrepresented students, promoting diversity in the QISE workforce while expediting its growth.Technical Abstract: Creating scalable and reliable QISE technologies requires material and device platforms that preserve quantum coherence and provide suitable interactions to produce and control entanglement. Defect-based quantum emitters in wide bandgap semiconductors have emerged as leading candidates for future QISE applications due to their potential for scalability and integration. Rare Earth-doped insulators have been extensively studied because the embedded RE ions have sharp, stable optical transitions and long lifetimes that facilitate high-fidelity quantum control. RE-doped semiconductors, however, have not previously received similar attention for QISE due to the limited availability of samples and challenges associated with competing native defects and background spins. If these challenges can be overcome, the RE-doped semiconductor platform could fill a significant gap for quantum technologies by providing a spectrally-stable electrically-pumped single-photon source, quantum memory, or element of a quantum repeater operating in the telecom C-band. In this approach, single Er ions are coupled to photonic device components, allowing the characterization of Er-doped GaAs as a single-photon source via anti-bunching experiments. These new devices will be achieved through controlled dilute doping and by enhancing the radiative rates of the Er ions using nanophotonic structures. As part of this effort, the growth of Er-doped GaAs at UD and the design and fabrication of new nanophotonic devices incorporating waveguiding and out-coupling schemes for enhanced light-collection efficiency are established.This project is jointly funded by the Office of Multidisciplinary Activities (MPS/OMA), and the Technology Frontiers Program (TIP/TF).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:经典信息技术使用光学互连在不同媒体平台之间中继信息。这通常是通过光纤来完成的,分别在光打开和关闭的情况下将数字 1 和 0 作为脉冲进行中继。对于经典技术来说,不需要精确控制发射或检测到的光子数量,只需能够区分亮与暗。量子信息技术需要能够传输单对纠缠光子的量子互连,这更具挑战性。在这方面,紧凑的电激活单光子源将是一个重要的进步。一种方法是利用单个铒 (Er) 原子在标准电信波长下发射的单光子。 Er 原子必须嵌入半导体主体中才能实现电激发,而砷化镓 (GaAs) 因其成熟的生长和纳米加工而成为理想选择。然而,仅从 Er 原子而不是 GaAs 主体实现发射仍然是一个挑战。提高铒原子光子发射率的一种方法是将原子嵌入纳米腔中。该项目的主要目标是研究掺铒砷化镓纳米腔器件在 QISE 中的应用,最终目标是开发一种在电信波长下工作的片上电泵浦单光子器件。该项目汇集了来自西切斯特大学 (WCU) 的经典光电应用稀土 (RE) 物理学专家和来自特拉华大学 (UD) 的可扩展量子光子技术专家。此外,此次合作还推进了一项新的 3+2 双学位项目,学生将在五年内获得 WCU 物理学学士学位和 UD 的 QISE 硕士学位。这一加速教育轨道旨在支持低收入和代表性不足的学生,促进 QISE 劳动力的多样性,同时加速其增长。技术摘要:创建可扩展且可靠的 QISE 技术需要能够保持量子相干性并提供适当交互的材料和设备平台并控制纠缠。宽带隙半导体中基于缺陷的量子发射器因其可扩展性和集成的潜力而成为未来 QISE 应用的主要候选者。稀土掺杂绝缘体已被广泛研究,因为嵌入的稀土离子具有尖锐、稳定的光学跃迁和长寿命,有利于高保真量子控制。然而,由于样品的可用性有限以及与竞争性本征缺陷和背景自旋相关的挑战,稀土掺杂半导体之前并未受到 QISE 的类似关注。如果这些挑战能够克服,稀土掺杂半导体平台可以通过提供光谱稳定的电泵浦单光子源、量子存储器或在电信C-中运行的量子中继器元件来填补量子技术的重大空白。乐队。在这种方法中,单个铒离子与光子器件组件耦合,允许通过反聚束实验将掺铒砷化镓表征为单光子源。这些新器件将通过受控的稀掺杂以及使用纳米光子结构提高铒离子的辐射率来实现。作为这项工作的一部分,建立了在UD的掺铒砷化镓的生长,以及结合波导和输出耦合方案以提高光收集效率的新型纳米光子器件的设计和制造。该项目由多学科办公室共同资助活动 (MPS/OMA) 和技术前沿计划 (TIP/TF)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brandon Mitchell其他文献

First Step Next: A Best-Evidence Synthesis of Replication Randomized Controlled Trials From 2009 to 2021
下一步:2009 年至 2021 年复制随机对照试验的最佳证据综合
  • DOI:
    10.1177/07419325211068145
  • 发表时间:
    2022-03-02
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    A. Frey;Jason W. Small;H. Walker;Brandon Mitchell;J. Seeley;Edward G. Feil;Jon Lee;S. Forness
  • 通讯作者:
    S. Forness

Brandon Mitchell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brandon Mitchell', 18)}}的其他基金

Equipment: MRI: Track 1 Acquisition of a Tunable Ultrafast Spectroscopy System at a Primarily Undergraduate Institution to Enhance Undergraduate Training
设备: MRI:第一轨道在本科院校采购可调谐超快光谱系统,以加强本科生培训
  • 批准号:
    2319135
  • 财政年份:
    2023
  • 资助金额:
    $ 79.76万
  • 项目类别:
    Standard Grant
RUI: Next Generation Rare Earth Based Light-Emitters for Solid-State Display & Quantum Information Technology Applications
RUI:用于固态显示的下一代稀土发光体
  • 批准号:
    2129183
  • 财政年份:
    2021
  • 资助金额:
    $ 79.76万
  • 项目类别:
    Standard Grant
RUI: Next Generation Rare Earth Based Light-Emitters for Solid-State Display & Quantum Information Technology Applications
RUI:用于固态显示的下一代稀土发光体
  • 批准号:
    2129183
  • 财政年份:
    2021
  • 资助金额:
    $ 79.76万
  • 项目类别:
    Standard Grant
Increasing the Persistence of STEM Majors through Nanoscience-Themed Activities that Support Academic, Professional, and Personal Engagement and Development
通过支持学术、专业和个人参与和发展的纳米科学主题活动,提高 STEM 专业的持久性
  • 批准号:
    2028230
  • 财政年份:
    2021
  • 资助金额:
    $ 79.76万
  • 项目类别:
    Standard Grant
RUI: Fate and Impact of CuPro 5000 and Kocide 3000: A Microcosm Based Study
RUI:CuPro 5000 和 Kocide 3000 的命运和影响:基于微观的研究
  • 批准号:
    1748439
  • 财政年份:
    2018
  • 资助金额:
    $ 79.76万
  • 项目类别:
    Standard Grant

相似国自然基金

前额叶及其脑网络在儿童共情发展中的作用:计算建模与追踪研究
  • 批准号:
    32371103
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基础学科拔尖学生发展及其影响机制的追踪研究
  • 批准号:
    72304231
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
儿童青少年创造力的异质性发展:一项“基因-环境-脑-行为”框架下的追踪研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
大学毕业生入职后政治技能的动态发展及其提升机制:一项多视角的追踪研究
  • 批准号:
    72162023
  • 批准年份:
    2021
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
新员工发展网络的建构模式及其职业影响:一项追踪研究
  • 批准号:
    72002016
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

ExpandQISE: Track 1: Development of Quantum Information Science Programs at an Undergraduate Institution through Research in 2D Qubit Systems
ExpandQISE:轨道 1:通过 2D 量子位系统研究在本科机构开发量子信息科学项目
  • 批准号:
    2328889
  • 财政年份:
    2023
  • 资助金额:
    $ 79.76万
  • 项目类别:
    Standard Grant
ExpandQISE: Track 1: A Deep-Dive into the Materials Science of Alpha-Ta Growth on Oxides for Superconducting Resonator Development
ExpandQISE:轨道 1:深入研究用于超导谐振器开发的氧化物上 α-Ta 生长的材料科学
  • 批准号:
    2328747
  • 财政年份:
    2023
  • 资助金额:
    $ 79.76万
  • 项目类别:
    Standard Grant
ExpandQISE: Track 1: Development of Quantum Information Science Programs at an Undergraduate Institution through Research in 2D Qubit Systems
ExpandQISE:轨道 1:通过 2D 量子位系统研究在本科机构开发量子信息科学项目
  • 批准号:
    2328889
  • 财政年份:
    2023
  • 资助金额:
    $ 79.76万
  • 项目类别:
    Standard Grant
ExpandQISE: Track 2: NC A&T QISE Research Workforce Development Programs
展开QISE:轨道 2:NC A
  • 批准号:
    2329097
  • 财政年份:
    2023
  • 资助金额:
    $ 79.76万
  • 项目类别:
    Continuing Grant
ExpandQISE: Track 2: NC A&T QISE Research Workforce Development Programs
展开QISE:轨道 2:NC A
  • 批准号:
    2329097
  • 财政年份:
    2023
  • 资助金额:
    $ 79.76万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了