Optically-controlled neuromodulation with silicon carbide-based nanostructures

利用碳化硅纳米结构进行光控神经调节

基本信息

  • 批准号:
    2128140
  • 负责人:
  • 金额:
    $ 52.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Extracellular electrical stimulation of neurons and heart cells, the standard means by which to study excitability, forms the basis for many implantable disease-treating devices including those for Parkinson's disease, depression, epilepsy, and cardiac arrhythmias. While these neural modulation devices have improved patients' quality of life, they are challenging to deploy in many animal studies due to being bulky, invasive, complex and expensive, thus limiting their use in basic neuroscience studies. The goal of this project is to demonstrate flexible and cost-effective silicon carbide (SiC)-based nanostructures that, when triggered by light, can modulate the behavior of single neurons. These new SiC-based interfaces will enable wireless, non-genetic, multiscale, precise modulation of neurons, overcoming many of the limitations of current implantable electrodes. This project will provide learning opportunities for students in a highly interdisciplinary area. The investigator will build on existing model programs at the University of Chicago to increase diversity in science and engineering by offering summer research opportunities to high school and undergraduate students. An international summer exchange program that allows undergraduate and graduate students to visit Israel will be continued and a special training program for outstanding high school students to compete in national competitions (e.g., Regeneron Science Talent) will be expanded. The research and education results will be disseminated broadly through peer-reviewed publications, seminars, conference presentations, and websites.Optogenetics has emerged as the leading modern approach for neuromodulation, but it is difficult to deploy in many animal model systems. Recently developed semiconductor and metal-based biomaterial interfaces have the potential to provide with relative ease the non-genetic and multiscale neural activities in a very broad range of animal model systems. However, the large-scale fabrication or synthesis methods for these materials and devices are usually very complex and expensive. Additionally, there is a lack of studies of both excitatory and inhibitory neuromodulation from the same class of materials. This project addresses these two limitations through use of silicon carbide (SiC) as a material to construct neural interfaces for optically triggered non-genetic neuromodulation. The Workflow Plan is presented as three consecutive steps: (1) innovation of synthetic methods for the large-scale silicon carbide synthesis and device fabrication, to (2) study both the excitatory and inhibitory responses using cultured neurons, and finally to (3) deployment and proof-of-concept testing in a mouse model. This project will bring together an efficient, multi-level, cross-disciplinary approach to achieve the large-scale and stable photoelectrochemical devices for random-access neuromodulation in the brain. The proposed study will also offer a unique knowledge and skill set that can open new areas of endeavor in the semiconductor or detector industry. The silicon carbide-based membranes studied in this work can potentially yield highly efficient biomedical devices for translational studies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
神经元和心脏细胞的细胞外电刺激是研究兴奋性的标准方法,它构成了许多植入式疾病治疗设备的基础,包括治疗帕金森病、抑郁症、癫痫和心律失常的设备。 虽然这些神经调节装置改善了患者的生活质量,但由于体积大、侵入性、复杂且昂贵,在许多动物研究中部署它们具有挑战性,从而限制了它们在基础神经科学研究中的使用。 该项目的目标是展示灵活且经济高效的碳化硅 (SiC) 纳米结构,当光触发时,它可以调节单个神经元的行为。这些新的基于 SiC 的接口将实现神经元的无线、非遗传、多尺度、精确调制,克服当前植入电极的许多限制。 该项目将为学生提供高度跨学科领域的学习机会。研究人员将以芝加哥大学现有的模型项目为基础,通过为高中生和本科生提供暑期研究机会来增加科学和工程的多样性。继续实施本科生和研究生赴以色列国际暑期交流项目,扩大优秀高中生参加再生元科学英才等全国竞赛专项培养项目。研究和教育成果将通过同行评审的出版物、研讨会、会议演示和网站广泛传播。光遗传学已成为神经调节的领先现代方法,但很难在许多动物模型系统中部署。最近开发的半导体和金属基生物材料界面有潜力在非常广泛的动物模型系统中相对轻松地提供非遗传和多尺度神经活动。然而,这些材料和器件的大规模制造或合成方法通常非常复杂且昂贵。此外,缺乏对同类材料的兴奋性和抑制性神经调节的研究。该项目通过使用碳化硅(SiC)作为材料来构建用于光触发非遗传神经调节的神经接口,从而解决了这两个限制。 工作流程计划分为三个连续步骤:(1) 大规模碳化硅合成和器件制造的合成方法创新,(2) 使用培养神经元研究兴奋性和抑制性反应,最后 (3)在小鼠模型中进行部署和概念验证测试。该项目将汇集一种高效、多层次、跨学科的方法,以实现用于大脑随机访问神经调节的大规模且稳定的光电化学装置。拟议的研究还将提供独特的知识和技能,可以开辟半导体或探测器行业的新领域。这项工作中研究的碳化硅基膜有可能产生用于转化研究的高效生物医学设备。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Porosity-based heterojunctions enable leadless optoelectronic modulation of tissues
基于孔隙率的异质结可实现组织的无引线光电调制
  • DOI:
    10.1038/s41563-022-01249-7
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    41.2
  • 作者:
    Prominski, Aleksander;Shi, Jiuyun;Li, Pengju;Yue, Jiping;Lin, Yiliang;Park, Jihun;Tian, Bozhi;Rotenberg, Menahem Y.
  • 通讯作者:
    Rotenberg, Menahem Y.
Perspectives on tissue-like bioelectronics for neural modulation
用于神经调节的类组织生物电子学的观点
  • DOI:
    10.1016/j.isci.2023.106715
  • 发表时间:
    2023-05-19
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Sun, Changxu;Cheng, Zhe;Abu-Halimah, Jj;Tian, Bozhi
  • 通讯作者:
    Tian, Bozhi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bozhi Tian其他文献

“One step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostrucutred framework”
❀从介观结构框架一步纳米铸造合成高度有序的单晶氧化铟纳米线阵列❀
  • DOI:
    10.1016/j.nuclphysb.2011.05.015
  • 发表时间:
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Haifeng Yang;Qihui Shi;Bozhi Tian;Qingyi Lu;Feng Gao;Songhai Xie;Jie Fan;Chengzhong Yu;Bo Tu;Dongyuan Zhao
  • 通讯作者:
    Dongyuan Zhao
Biology-guided engineering of bioelectrical interfaces
  • DOI:
    10.1039/d1nh00538c
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Bernadette A. Miao;Lingyuan Meng;Bozhi Tian
  • 通讯作者:
    Bozhi Tian
Nanoscale silicon for subcellular biointerfaces
  • DOI:
    10.1039/c7tb00151g
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Hector Acaron Ledesma;Bozhi Tian
  • 通讯作者:
    Bozhi Tian
“Microwave-assisted solvothermal synthesis of radial ZnS nanoribbons”
放射状ZnS纳米带的微波辅助溶剂热合成
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoying Liu;Bozhi Tian;Chengzhong Yu;Bo Tu;Dongyuan Zhao
  • 通讯作者:
    Dongyuan Zhao
Soft materials as biological and artificial membranes
  • DOI:
    10.1039/d1cs00029b
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    46.2
  • 作者:
    Shukun Tang;Zahra Davoudi;Guangtian Wang;Zihao Xu;Tanzeel Rehman;Aleksander Prominski;Bozhi Tian;Kaitlin M. Bratlie;Haisheng Peng;Qun Wang
  • 通讯作者:
    Qun Wang

Bozhi Tian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bozhi Tian', 18)}}的其他基金

NSF-BSF: Designing semiconductor-based membranes for photoelectrochemical modulation of cardiac systems
NSF-BSF:设计用于心脏系统光电化学调制的半导体膜
  • 批准号:
    2105321
  • 财政年份:
    2021
  • 资助金额:
    $ 52.27万
  • 项目类别:
    Standard Grant
CAREER: Biomimetic Nanostructured Semiconductors for Controlled Electrical Interfacing with Single Cells
职业:用于与单细胞进行受控电连接的仿生纳米结构半导体
  • 批准号:
    1254637
  • 财政年份:
    2013
  • 资助金额:
    $ 52.27万
  • 项目类别:
    Continuing Grant

相似国自然基金

β型γ-TiAl合金(α+β)两相区高温变形机制及受控冷却组织遗传行为
  • 批准号:
    52304412
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
潜流带“地质电池”储存与释放电子的规律与受控机制
  • 批准号:
    42377056
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
真实非受控日常场景下的远程心脏健康监测
  • 批准号:
    62311530046
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
非受控高动态巨型星座网络高可靠理论及其关键技术研究
  • 批准号:
    62372259
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
大型丝状绿藻藻华驱动富营养化海参养殖池塘沉积物-水系统产甲烷过程及受控机制
  • 批准号:
    42376155
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Sacral neuromodulation for the management of chronic pelvic pain
骶神经调节治疗慢性盆腔疼痛
  • 批准号:
    10837385
  • 财政年份:
    2023
  • 资助金额:
    $ 52.27万
  • 项目类别:
A randomized, sham-controlled clinical trial evaluating individualized neuromodulation of cortical regions involved in neurogenic overactive bladder in Multiple Sclerosis
一项随机、假对照临床试验,评估多发性硬化症患者神经源性膀胱过度活动症相关皮质区域的个体化神经调节
  • 批准号:
    10560461
  • 财政年份:
    2023
  • 资助金额:
    $ 52.27万
  • 项目类别:
Effects of Neuromodulation and Cognitive Training for Suicide in Veterans (ENACTS)
神经调节和认知训练对退伍军人自杀的影响 (ENACTS)
  • 批准号:
    10623228
  • 财政年份:
    2022
  • 资助金额:
    $ 52.27万
  • 项目类别:
Thoracic Neuromodulation for Diabetic Gastroparesis
胸神经调节治疗糖尿病胃轻瘫
  • 批准号:
    10661838
  • 财政年份:
    2022
  • 资助金额:
    $ 52.27万
  • 项目类别:
Brain-controlled neuroprosthetic hemotherapy for spinal cord injury
脑控神经假体血液治疗脊髓损伤
  • 批准号:
    474566
  • 财政年份:
    2022
  • 资助金额:
    $ 52.27万
  • 项目类别:
    Studentship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了