Collaborative Research: SaTC: CORE: Small: Flanker: Automatically Detecting Lateral Movement in Organizations Using Heterogeneous Data and Graph Representation Learning

协作研究:SaTC:核心:小型:侧翼:使用异构数据和图表示学习自动检测组织中的横向运动

基本信息

  • 批准号:
    2127200
  • 负责人:
  • 金额:
    $ 24.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

In modern cyberattacks, adversaries do not target single computer systems. Instead, they first set an initial foothold into a company's network and later amplify their breach by compromising additional assets, until they reach their final target inside an organization. This process of advancing computer breaches is known as lateral movement. Detecting lateral movement is challenging, because attackers can use multiple vectors for infection (e.g., phishing emails) and computer systems in a network present a large degree of diversity (e.g., workstations, network equipment). For this reason, no comprehensive system to effectively detect lateral movement is currently available. Yet, detecting and stopping computer breaches as soon as possible is critical to ensure the safety and the prosperity of U.S. corporations and citizens. The aim of this project is to fill this gap by developing Flanker, a system able to automatically detect lateral movement in the network of an organization. Unlike existing approaches, the goal of Flanker is to operate on a variety of data sources (e.g., data coming from network and applications) to be able to detect cyberattacks as they span different online services and computers across the organization.This project consists of four phases. In the first phase the investigators collect heterogeneous datasets from a variety of sources and develop techniques to clean them from noise and anonymize them to protect the identity of users. In the second phase this data is used to build a graph that represents network activity, and graph representation learning approaches are used to build a model for this network activity. In the third phase this model is used to automatically detect lateral movement attacks, by either applying anomaly detection or supervised learning techniques. Finally, the investigators develop visualization techniques to enable a security analyst to properly understand the detection results and adopt appropriate countermeasures against the attack.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在现代网络攻击中,对手并不针对单个计算机系统。 相反,他们首先在公司网络中建立了最初的立足点,然后通过损害额外的资产来扩大他们的破坏,直到他们在组织内部达到最终目标。这种推进计算机漏洞的过程称为横向移动。检测横向移动具有挑战性,因为攻击者可以使用多个载体进行感染(例如网络钓鱼电子邮件),并且网络中的计算机系统呈现出很大程度的多样性(例如工作站、网络设备)。因此,目前还没有有效检测横向运动的综合系统。然而,尽快检测和阻止计算机泄露对于确保美国企业和公民的安全和繁荣至关重要。该项目的目的是通过开发 Flanker 来填补这一空白,Flanker 是一个能够自动检测组织网络中横向移动的系统。与现有方法不同,Flanker 的目标是对各种数据源(例如来自网络和应用程序的数据)进行操作,以便能够检测跨组织不同在线服务和计算机的网络攻击。该项目由四个部分组成阶段。在第一阶段,研究人员从各种来源收集异构数据集,并开发技术来清除数据中的噪音并对其进行匿名化,以保护用户的身份。在第二阶段,这些数据用于构建表示网络活动的图,并使用图表示学习方法来构建该网络活动的模型。在第三阶段,该模型用于通过应用异常检测或监督学习技术来自动检测横向移动攻击。最后,调查人员开发可视化技术,使安全分析师能够正确理解检测结果并针对攻击采取适当的对策。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Engin Kirda其他文献

Chromosome
染色体
  • DOI:
    10.1007/978-1-4419-5906-5_1259
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Lars R. Knudsen;Gregor Leander;Friedrich L. Bauer;Christophe De Cannière;Christophe De Cannière;Christophe Petit;Jean;Bart Preneel;Carlisle M. Adams;Anton Stiglic;Alexander W. Dent;R. Housley;S. Turner;Matthias Schunter;Gerrit Bleumer;Mike Just;David Naccache;H. V. Tilborg;S. Vimercati;Pierangela Samarati;Ebru Celikel Cankaya;Alex Biryukov;Lee McFearin;Sabrina De Capitani di Vimercati;Burt Kaliski;Caroline Fontaine;D. Micciancio;N. Sendrier;Nadia Heninger;Jelena Mirkovic;Anne Canteaut;Claude Crépeau;Tom Caddy;P. Salvaneschi;Markus G. Kuhn;Salil Vadhan;Igor Shparlinski;Xiaofeng Wang;G. Dr;Moritz Riesner;M. Vauclair;Arnon Rosenthal;E. Sciore;M. Soete;Michael T. Hunter;C. Carlet;F. Cuppens;Nora Cuppens;Yvo Desmedt;Torben P. Pedersen;M. Locasto;Dan Boneh;Adam J. Lee;Engin Kirda;Tor Helleseth;David accache;Hideki Imai;Atsuhiro Yamagishi;Marion Videau;P. Charpin
  • 通讯作者:
    P. Charpin
Multi-Exponentiation
多重指数
  • DOI:
    10.1007/978-1-4419-5906-5_1156
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Xiaokui Xiao;Bart Preneel;Sara Foresti;Engin Kirda;Stefan Katzenbeisser;J. Kinder;Helmut Veith;Shambhu Upadhyaya;Sabrina De Capitani di Vimercati;Pierangela Samarati;Yvo Desmedt;Christophe De Cannière;Carlisle M. Adams;Moses Liskov;Tor Helleseth;F. L. Bauer;Nicolas Sendrier;Nicky Mouha;Alex Biryukov;XiaoFeng Wang;Jerome A. Solinas;Guido Salvaneschi;Paolo Salvaneschi;Josep Domingo;Anne Canteaut;Burt Kaliski;Matt Franklin;Marijke De Soete;Marijke De Soete;Scott Contini;Çetin Kaya Koç;Colin D. Walter;David Naccache;Ç. Koç;Arun Ross;Giovanni Livraga;Frédéric Cuppens;Nora Cuppens;Berry Schoenmakers;Jim Alves;Berk Sunar;Chen;Louis Goubin;Jacques Patarin;Bo
  • 通讯作者:
    Bo
Dissertation Trading Dependability, Performance, and Security in First-Price Sealed-Bid Online Auctions with Temporal Decoupling ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der technischen Wissenschaften unter der Leitung von
具有时间解耦的一价密封投标在线拍卖中论文交易的可靠性、性能和安全性
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Engin Kirda
  • 通讯作者:
    Engin Kirda

Engin Kirda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Engin Kirda', 18)}}的其他基金

Collaborative Research: EAGER: Understanding User Needs for Access Control Systems in Smart Settings
合作研究:EAGER:了解智能设置中访问控制系统的用户需求
  • 批准号:
    2219921
  • 财政年份:
    2022
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Rethinking Fuzzing for Security
协作研究:SaTC:核心:中:重新思考安全性模糊测试
  • 批准号:
    2031390
  • 财政年份:
    2020
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
SaTC: CORE: Medium: Collaborative: Taming Web Content Through Automated Reduction in Browser Functionality
SaTC:核心:媒介:协作:通过自动减少浏览器功能来驯服 Web 内容
  • 批准号:
    1703454
  • 财政年份:
    2017
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
TWC: Medium: Collaborative: Automated Reverse Engineering of Commodity Software
TWC:媒介:协作:商品软件的自动逆向工程
  • 批准号:
    1409738
  • 财政年份:
    2014
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
TC: Small: Automatically Identifying Botnet Command and Control Infrastructures
TC:小型:自动识别僵尸网络命令和控制基础设施
  • 批准号:
    1116777
  • 财政年份:
    2011
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向开放域对话系统信息获取的准确性研究
  • 批准号:
    62376067
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了