Interacting Particle Systems and Beyond

相互作用的粒子系统及其他

基本信息

  • 批准号:
    2153958
  • 负责人:
  • 金额:
    $ 20.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-15 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The project focuses on the study of lattice models in statistical mechanics. The algebraic structure inherent in such models allows for many exact computations, while their probabilistic nature provides a new point of view and interpretation of the underlying algebraic data. For instance, these systems can be used to study how crystals melt, how neurons move through the brain, how a fire front advances, how a cancer spreads, how a plankton colony grows in the ocean. The research project aims at achieving a better understanding of the macroscopic behavior of some important models as the size of the system grows.The models under consideration are usually referred to as “integrable” or “exactly solvable.” Though exactly solvable systems are very special, their asymptotic properties are believed to be representative for a larger family of models. In this way, besides being interesting themselves, exactly solvable systems are exemplars of their conjectured universality classes and can be used to build intuition and make predictions. The aim is to obtain a variety of robust methods to study the universality classes. This research program seeks to establish a better understanding of some “universality” features in the context of certain interacting particle systems. The research program consists of three main directions— the study of log-gases (ensemble of particles on the line confined by an external potential that repel each other logarithmically), the study of the stationary measures for the Kardar-Parisi-Zhang equation (a non-linear stochastic partial differential equation that was originally proposed as a model of surface growth), and the study of traffic models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目着重于统计力学中的晶格模型。用于研究晶体如何融化,神经元如何移动大脑,火灾前进,癌症如何扩散,海洋中的浮游生物菌落如何旨在更好地了解某些人的宏观行为随着系统的增长,重要的模型通常称为“可解决的”或“完全可解决”的模型。建立插图并进行预测。 (粒子s在线上的合奏,被外部电位相互排斥的外部电势),对最初作为表面生长模型的kardar-parisi-zhang方程的研究)NSF'Sf'Sf'Sf'Stututory使用Toundation的Revader的心想评估会影响W标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alisa Knizel其他文献

Moduli spaces of q-connections and gap probabilities
q 连接的模空间和间隙概率
  • DOI:
    10.1093/imrn/rnv366
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alisa Knizel
  • 通讯作者:
    Alisa Knizel
The strong Feller property of the open KPZ equation
开式KPZ方程的强Feller性质
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alisa Knizel;K. Matetski
  • 通讯作者:
    K. Matetski
$q$-Racah ensemble and $q$-P$left(E_7^{(1)}/A_{1}^{(1)} ight)$ discrete Painlev'e equation
$q$-Racah 系综和 $q$-P$left(E_7^{(1)}/A_{1}^{(1)} ight)$ 离散 Painleve 方程
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Dzhamay;Alisa Knizel
  • 通讯作者:
    Alisa Knizel
Asymptotics of random domino tilings of rectangular Aztec diamonds
矩形阿兹特克钻石随机多米诺骨牌镶嵌的渐近性
Algebraic analogue of Atiyah's theorem
阿蒂亚定理的代数模拟

Alisa Knizel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alisa Knizel', 18)}}的其他基金

Interacting Particle Systems and Beyond
相互作用的粒子系统及其他
  • 批准号:
    2348756
  • 财政年份:
    2023
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1704186
  • 财政年份:
    2017
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Fellowship Award

相似国自然基金

磁有序系统的对称群与新型准粒子
  • 批准号:
    12374166
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
非生物多粒子系统通过瓶颈的相变机理研究
  • 批准号:
    12364029
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
激光增材制造粒子加速器真空系统复杂部件材料真空性能优化研究
  • 批准号:
    12375321
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
格点和完全图上的交互粒子系统的流体动力学及相关
  • 批准号:
    12371142
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
单粒子效应对基于纳米级异构多核SoC的卷积神经网络系统影响机理研究
  • 批准号:
    12305303
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
  • 批准号:
    2340762
  • 财政年份:
    2024
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Continuing Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
  • 批准号:
    24K06843
  • 财政年份:
    2024
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
  • 批准号:
    2345533
  • 财政年份:
    2023
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Standard Grant
Interacting Particle Systems and Beyond
相互作用的粒子系统及其他
  • 批准号:
    2348756
  • 财政年份:
    2023
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Standard Grant
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
  • 批准号:
    2206085
  • 财政年份:
    2022
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了