Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
基本信息
- 批准号:2206085
- 负责人:
- 金额:$ 19.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2023-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Particles in confined systems such as the atoms or molecules of a gas in a container interact either through repulsion or attraction, with interactions increasing in strength as particles become close together. In principle, the equations of classical and quantum physics allow complete determination of the behavior of each particle in the system for arbitrary periods of time. In practice, the number of particles, and therefore the complexity of the system, ranges beyond the capabilities of the best computing resources. This project aims to achieve a substantial reduction in computational complexity through a statistical point of view, focused on the probability of finding at a given time a particle in the system at a certain position in space and moving with a certain velocity. The results are expected to be directly applicable to the modeling of states of matter such as Bose-Einstein condensates or plasmas, and of systems with particle-like behavior, as vortices in fluids or superconductors. The project will provide mentoring and training opportunities for a new generation of researchers at the intersection of mathematics and physics. The first part of the project concerns the mean-field limit of systems of particles with inverse power potentials, for instance of Coulomb or Riesz type. The investigator aims to determine the minimal regularity assumptions on the limiting equation needed for quantitative convergence, whether convergence is valid in the more realistic setting of noise in the dynamics, the optimal time scales for the mean-field approximation to hold, and the sharp rate of convergence. The second part deals with the supercritical mean-field scaling regime, a singular limit of Newton’s second law or the semiclassical Schrödinger equation leading to a kinetic generalization of Euler’s equation for an ideal fluid. The goal is to identify the optimal range for the validity of this limit through analytical and numerical means by building on progress for the monokinetic case where the limiting equation reduces to the incompressible Euler equation and drawing on a connection to the quasineutral limit in plasma physics. An important quantity for measuring convergence is a modulated energy-entropy or free energy, which is related to renormalized energies appearing in the statistical mechanics of Coulomb and Riesz gasses. Studying these quantities and their variations along transport fields leads to functional inequalities of commutator type, establishing new connections to harmonic analysis of independent interest.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在容器中,气体的原子或气体的分子等密封系统中的颗粒通过排斥或吸引力相互作用,并且随着颗粒的近距离相互作用,强度的相互作用会增加。原则上,经典物理和量子物理的方程式可以完全确定系统中每个粒子的行为任意时间。实际上,粒子的数量以及系统的复杂性,范围超出了最佳计算资源的功能。该项目旨在通过统计的角度实现计算复杂性的大幅度降低,重点是在给定时间在空间中某个位置处找到粒子并以一定速度移动的可能性。预计该结果将直接适用于物质状态(例如Bose-Einstein凝结物或等离子体)以及具有颗粒样行为的系统,作为流体或超导体中的涡流。项目将为新一代研究人员提供数学与物理学交集的新一代研究人员的指导和培训机会。该项目的第一部分涉及具有反功率电势的粒子系统的平均场限制,例如库仑或里斯类型。研究者旨在确定定量收敛所需的极限方程的最低规律性假设,是否在动力学中噪声的更现实设置中有效,最佳的时间尺度,含义场近似的最佳时间尺度以及较高的收敛速率。第二部分介绍了超临界平均尺度缩放制度,牛顿第二定律的奇异极限或半经典的Schrödinger方程,从而导致Euler对等效性对于理想流体的等效性。目的是通过基于单基因剂的进度来确定该限制通过分析和数值手段的最佳范围,在这种情况下,限制方程将减少到不可压缩的Euler方程并绘制与等离子物理学中的准中性极限的连接。测量收敛性的重要数量是调制能量渗透或自由能,该能量与库仑和瑞斯气体的统计机理中出现的重新归一化能量有关。研究这些数量及其沿运输领域的变化导致换向器类型的功能不平等,建立了与独立兴趣的谐波分析的新联系。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子和更广泛的影响标准来评估通过评估来诚实地对支持进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Rosenzweig其他文献
Relative entropy and modulated free energy without confinement via self-similar transformation
通过自相似变换获得无限制的相对熵和调制自由能
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Matthew Rosenzweig;Sylvia Serfaty - 通讯作者:
Sylvia Serfaty
Matthew Rosenzweig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Rosenzweig', 18)}}的其他基金
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
- 批准号:
2345533 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
相似国自然基金
考虑多相多介质耦合作用的地下水位变化场地非线性地震响应机理研究
- 批准号:52378474
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于CPTU原位测试的污染场地土-膨润土隔离墙工程特性评价及防渗性能辨识研究
- 批准号:42302320
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
滨海高盐低渗场地LNAPLs污染物赋存状态识别与运移机制研究
- 批准号:42372335
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于公共数据挖掘的工业场地风险关键驱动因子作用机制研究
- 批准号:42307576
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
驾校场地中轮胎磨损颗粒降雨径流迁移特性的形成机制及其生态毒性效应
- 批准号:42377407
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
- 批准号:
2345533 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Many-particle Systems with Singular Interactions: Statistical Mechanics and Mean-field Dynamics
具有奇异相互作用的多粒子系统:统计力学和平均场动力学
- 批准号:
2247846 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Analysis of Diffusion Equations with Nonlinear Singular Sources in Mean Field Games
平均场博弈中非线性奇异源扩散方程分析
- 批准号:
1310746 - 财政年份:2012
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Analysis of Diffusion Equations with Nonlinear Singular Sources in Mean Field Games
平均场博弈中非线性奇异源扩散方程分析
- 批准号:
1109682 - 财政年份:2011
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
相分離界面への幾何測度論の応用
几何测度理论在相分离界面中的应用
- 批准号:
12740112 - 财政年份:2000
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)