Critical Dispersive Partial Differential Equations
临界色散偏微分方程
基本信息
- 批准号:2153750
- 负责人:
- 金额:$ 23.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The main objective of this project is to improve the understanding of dispersive partial differential equations. Dispersive partial differential equations include the wave, Schrodinger, and Korteweg de-Vries equation. These equations are ubiquitous in physics, modeling phenomena ranging from the behavior of subatomic particles to interstellar gravity waves. Of particular interest are questions of long time behavior of solutions. In other words, given certain initial data, does a solution to the equation exist? If a solution does exist, does it exist for all time? What is the behavior of the solution as time approaches either infinity or the maximum time for which the solution exists? Can we catalogue the various long time behaviors and obtain a complete description of the possible phenomena? The project provides research training opportunities for graduate students. In this project, the Principal Investigator and his collaborators study the long time behavior of dispersive partial differential equations with initial data in a critical norm. Many diverse dispersive partial differential equations have a scaling symmetry, and a solution to the equation gives an entire family of solutions. Often, the scaling symmetry completely describes the local behavior of the equation completely: the equation is well-posed for initial data in the critical space, but it is ill-posed for data in a less regular (subcritical) space. We wish to understand the long time behavior for such equations at the critical regularity, where it is known that local well-posedness occurs. Additionally, in many such equations, the set where ill-posedness occurs in a subcritical space is often a set of measure zero. Thus, we hope to describe the nature of the set of initial data for which ill-posedness occurs. The specific problems that are addressed in this project are the Schrodinger maps problem, the focusing, mass-critical nonlinear Schrodinger equation, the energy subcritical nonlinear wave and Schrodinger equations, and the one dimensional cubic nonlinear Schrodinger equation. For the defocusing, energy subcritical problems, we expect scattering to occur for initial data in the critical Sobolev space. Solitons are known to occur for the Schrodinger map problem and the mass-critical nonlinear Schrodinger equation. In both cases, scattering is known to occur for initial data below the soliton (for Schrodinger maps this is only in the equivariant case). We wish to understand the solution for initial data slightly above the soliton for these problems. Finally, for the one dimensional nonlinear Schrodinger equation, the aim is to understand the long time behavior for initial data that does not decay at infinity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的主要目的是提高对分散部分微分方程的理解。分散部分微分方程包括波浪,Schrodinger和Korteweg De-Vries方程。这些方程在物理学中无处不在,建模现象从亚原子颗粒的行为到星际重力波。特别有趣的是解决方案长期行为的问题。换句话说,鉴于某些初始数据,是否存在该方程的解决方案?如果解决方案确实存在,是否一直存在?当时间接近无穷大或解决方案的最大时间时,解决方案的行为是什么?我们可以分类各种长期行为并获得可能现象的完整描述吗?该项目为研究生提供了研究培训机会。在这个项目中,主要研究者及其合作者研究了具有关键规范的初始数据的分散部分微分方程的长时间行为。许多多样化的分散偏微分方程具有缩放对称性,对方程式的解决方案为整个解决方案提供了。通常,缩放对称性完全描述了方程的局部行为:方程在关键空间中的初始数据适当,但是在较不正常(亚临界)空间中的数据范围不足。我们希望在临界规律性下了解此类方程式的长时间行为,在那里知道当地的适合良好。此外,在许多这样的方程式中,在亚临界空间中发生不适的集合通常是一组量度零。因此,我们希望描述出现不良性的初始数据集的性质。该项目中解决的具体问题是Schrodinger地图问题,聚焦,质量至关重要的非线性Schrodinger方程,能量亚临界非线性波和Schrodinger方程以及一维立方非线性Schrodinger方程。对于散落的,能量亚临界问题,我们希望在关键Sobolev空间中进行初始数据发生散射。已知孤子是出于Schrodinger地图问题和质量至关重要的非线性Schrodinger方程而发生的。在这两种情况下,都知道在孤子下方的初始数据中发生散射(对于Schrodinger地图而言,这仅在均等的情况下)。我们希望理解这些问题的初始数据略高于Soliton的解决方案。最后,对于一维非线性Schrodinger方程式,目的是了解无限衰减的初始数据的长时间行为。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准通过评估来获得支持的。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The L2 sequential convergence of a solution to the mass-critical NLS above the ground state
基态以上质量临界 NLS 解的 L2 顺序收敛
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Benjamin Dodson
- 通讯作者:Benjamin Dodson
Instability of the soliton for the focusing, mass-critical generalized KdV equation
聚焦质量临界广义 KdV 方程的孤子不稳定性
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:1.1
- 作者:Benjamin Dodson;Cristian Gavrus
- 通讯作者:Cristian Gavrus
A Determination of the Blowup Solutions to the Focusing NLS with Mass Equal to the Mass of the Soliton
质量等于孤子质量的聚焦NLS爆炸解的确定
- DOI:10.1007/s40818-022-00142-5
- 发表时间:2023
- 期刊:
- 影响因子:2.8
- 作者:Dodson, Benjamin
- 通讯作者:Dodson, Benjamin
Global well-posedness for the defocusing, cubic nonlinear Schrodinger equation with initial data in a critical space
临界空间中具有初始数据的散焦三次非线性薛定谔方程的全局适定性
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Benjamin Dodson
- 通讯作者:Benjamin Dodson
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Dodson其他文献
Sequential convergence of a solution to the Chern--Simons--Schrodinger equation
- DOI:
- 发表时间:
2023-09 - 期刊:
- 影响因子:0
- 作者:
Benjamin Dodson - 通讯作者:
Benjamin Dodson
The <math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e22" altimg="si2.svg" class="math"><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math> sequential convergence of a solution to the mass-critical NLS above the ground state
- DOI:
10.1016/j.na.2021.112612 - 发表时间:
2022-02-01 - 期刊:
- 影响因子:
- 作者:
Benjamin Dodson - 通讯作者:
Benjamin Dodson
Benjamin Dodson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Dodson', 18)}}的其他基金
Critical Nonlinear Dispersive Equations
临界非线性色散方程
- 批准号:
1764358 - 财政年份:2018
- 资助金额:
$ 23.28万 - 项目类别:
Continuing Grant
Critical Nonlinear Dispersive Equations
临界非线性色散方程
- 批准号:
1500424 - 财政年份:2015
- 资助金额:
$ 23.28万 - 项目类别:
Continuing Grant
相似国自然基金
随机噪声下分数阶关联非线性系统的分散主动抗干扰控制
- 批准号:62303397
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
海洋环境下复材网格-水下不分散砂浆复合加固锈蚀桥墩抗震性能研究
- 批准号:52308293
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
混合电解质中单分散金属-金属“强−弱N吸附对”高效电催化N2还原合成氨研究
- 批准号:22372007
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多级分散体系下沥青砂浆负载形变方向性特征及其力学性能宏细观关联机制
- 批准号:52378435
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
小角中子散射结合多尺度分子动力学模拟探究固体分散体晶态转化机制
- 批准号:82304413
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Safe and Sustainable Distributed Sharing of Various Local Data by Partial Recoverable Secret Sharing Scheme
通过部分可恢复的秘密共享方案安全、可持续地分布式共享各种本地数据
- 批准号:
23K03859 - 财政年份:2023
- 资助金额:
$ 23.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of Regular and Random Soliton Gases in Integrable Dispersive Partial Differential Equations.
可积色散偏微分方程中规则和随机孤子气体的分析。
- 批准号:
2307142 - 财政年份:2023
- 资助金额:
$ 23.28万 - 项目类别:
Standard Grant
Research on integrable two-dimensional partial difference equations using the theory of consistency around a cube property
基于立方体性质的一致性理论研究可积二维偏差分方程
- 批准号:
23K03145 - 财政年份:2023
- 资助金额:
$ 23.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-soliton Dynamics for Dispersive Partial Differential Equations
色散偏微分方程的多孤子动力学
- 批准号:
2247290 - 财政年份:2023
- 资助金额:
$ 23.28万 - 项目类别:
Standard Grant
CAREER: Regularity Theory of Measures and Dispersive Partial Differential Equations
职业:测度正则性理论和色散偏微分方程
- 批准号:
2142064 - 财政年份:2022
- 资助金额:
$ 23.28万 - 项目类别:
Continuing Grant