CRII: CNS: Towards Spectrum and Energy Efficient Large-scale IoT Communications: A Cross-layer Optimization Approach

CRII:CNS:迈向频谱和节能的大规模物联网通信:跨层优化方法

基本信息

  • 批准号:
    2153428
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Although 5G has dramatically improved network capacity and spectrum efficiency (SE), the explosive growth of Internet of Things (IoT) demands for more spectrum and energy resources to support high device density and massive traffics. It is estimated that at least 5.2 GHz bandwidth is required for just eHealth Care IoT if spectrum is accessed exclusively, or 1.3 GHz even with dynamic sharing strategy. It is clear that shortage of spectrum resources is a major bottleneck for the success of IoT popularity. On the other hand, current IoT devices use standards such as Bluetooth, LoRA, Sigfox, narrow-band IoT (NB-IoT), or Zigbee, which require power-hungry active radio frequency components like oscillators and converters. Battery-driven IoT devices can hardly sustain years of life-cycle goal even with infrequent transmission and optimized low-power protocols. Thus, sustainable energy consumption is another challenge. With tens of billions of IoTs desire for connectivity by 2030, there is a pressing need to address both SE and energy efficiency (EE) challenges to accommodate for such densified IoT networks. This research seeks to improve SE and EE performance while providing guaranteed quality of service (QoS) for IoTs at large-scale, thereby providing a feasible and practical connectivity solution in massive IoT era. Outcomes from this project can bring following impacts: 1) a hybrid and cooperative communication architect for IoTs, which combines benefits from both active and passive mode; 2) integration of research and curriculum design, capstone projects to both undergraduate and graduate students; 3) cutting-edge research experiences to a primarily undergraduate institution (PUI). The core approach is to enable IoT device with a wireless-powered hybrid communication structure that can not only minimize energy footprint with energy harvesting from ambient signals, but also integrate coordinated passive and active communication to support versatile QoS needs with efficient spectrum utilization through user cooperation. This project offers a holistic solution to deliver following innovations. 1) A novel PHY transmission architect. It combines a bio-inspired symbiotic radio to coordinate excessive interference. Optimization problems for SE and EE metrics are introduced from PHY resource allocation perspective. 2) The co-designed MAC layer protocol to ensure proper user and resource coordination. Two protocols will be introduced, one for maximum performance and the other for lower complexity. 3) System validation with software and hardware implementations. Extensive experimental verification is designed to systematically validate the performance of proposed schemes and algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金根据《2021 年美国救援计划法案》(公法 117-2)提供。尽管 5G 极大地提高了网络容量和频谱效率 (SE),但物联网 (IoT) 需求的爆炸式增长获取更多频谱和能源资源来支持高设备密度和海量流量。据估计,如果专门访问频谱,则仅电子医疗保健物联网就需要至少 5.2 GHz 带宽,或者即使采用动态共享策略也需要 1.3 GHz 带宽。显然,频谱资源短缺是物联网成功普及的主要瓶颈。另一方面,当前的物联网设备使用蓝牙、LoRA、Sigfox、窄带物联网 (NB-IoT) 或 Zigbee 等标准,这些标准需要高功耗的有源射频组件,例如振荡器和转换器。即使使用不频繁的传输和优化的低功耗协议,电池驱动的物联网设备也很难维持多年的生命周期目标。因此,可持续能源消耗是另一个挑战。到 2030 年,数百亿物联网渴望实现互联,因此迫切需要解决 SE 和能源效率 (EE) 挑战,以适应这种密集的物联网网络。本研究旨在提高SE和EE性能,同时为大规模物联网提供有保证的服务质量(QoS),从而在大规模物联网时代提供可行且实用的连接解决方​​案。该项目的成果可以带来以下影响:1)物联网混合协作通信架构,结合了主动和被动模式的优点; 2)将研究与课程设计、本科生和研究生的顶点项目相结合; 3) 本科院校 (PUI) 的前沿研究经验。核心方法是使物联网设备具有无线供电的混合通信结构,不仅可以通过从环境信号中收集能量来最大限度地减少能源足迹,还可以集成协调的无源和有源通信,以通过用户合作实现高效频谱利用来支持多样化的 QoS 需求。该项目提供了一个整体解决方案来实现以下创新。 1) 新颖的 PHY 传输架构。它结合了仿生共生无线电来协调过度干扰。从 PHY 资源分配的角度引入了 SE 和 EE 指标的优化问题。 2) 共同设计的MAC层协议,确保用户和资源的正确协调。将引入两种协议,一种用于最大性能,另一种用于降低复杂性。 3) 通过软件和硬件实现进行系统验证。广泛的实验验证旨在系统地验证所提出的方案和算法的性能。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haijian Sun其他文献

Robust Beamforming Design in a NOMA Cognitive Radio Network Relying on SWIPT
基于 SWIPT 的 NOMA 认知无线电网络中的鲁棒波束成形设计
Research on the medication rules of post-surgical thyroid cancer treatment by Professor Xu Zhiyin (based on multi-dimensional data mining).
许志银教授甲状腺癌术后治疗用药规律研究(基于多维数据挖掘)
  • DOI:
    10.1016/j.asjsur.2022.02.014
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Haijian Sun;Liu Li;Yong Zhu;Hong Zhu
  • 通讯作者:
    Hong Zhu
WiSegRT: Dataset for Site-Specific Indoor Radio Propagation Modeling with 3D Segmentation and Differentiable Ray-Tracing: (Invited Paper)
WiSegRT:使用 3D 分割和可微光线追踪进行特定地点室内无线电传播建模的数据集:(特邀论文)
End-user viewpoint control of live video from a medical camera array
来自医疗摄像机阵列的实时视频的最终用户视点控制
HawkRover: An Autonomous mmWave Vehicular Communication Testbed with Multi-sensor Fusion and Deep Learning
HawkRover:具有多传感器融合和深度学习的自主毫米波车辆通信测试台
  • DOI:
    10.48550/arxiv.2401.01822
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ethan Zhu;Haijian Sun;Mingyue Ji
  • 通讯作者:
    Mingyue Ji

Haijian Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haijian Sun', 18)}}的其他基金

ERI: Toward mmWave Vehicular Communication: A Multisensor Multimodal Deep Data Fusion Approach
ERI:迈向毫米波车辆通信:多传感器多模态深度数据融合方法
  • 批准号:
    2138680
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: CNS: Towards Spectrum and Energy Efficient Large-scale IoT Communications: A Cross-layer Optimization Approach
CRII:CNS:迈向频谱和节能的大规模物联网通信:跨层优化方法
  • 批准号:
    2236449
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似国自然基金

中枢神经系统免疫豁免微环境中CAR-T细胞的抗淋巴瘤效应与命运转归
  • 批准号:
    82330004
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
染色质重塑因子CHD3调控中枢神经系统少突胶质细胞发育的机制研究
  • 批准号:
    82301950
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
猪源冠状病毒PHEV经鼻黏膜入侵中枢神经系统的分子机制
  • 批准号:
    32302851
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
体细胞突变诱导的壁细胞缺陷在中枢神经系统血管畸形出血中的作用机制及干预研究
  • 批准号:
    82330038
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
IL-17A通过STAT5影响CNS2区域甲基化抑制调节性T细胞功能在银屑病发病中的作用和机制研究
  • 批准号:
    82304006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII: CNS: Towards Robust and Efficient Dynamic Spectrum Sharing with Knowledge Transfer
CRII:CNS:通过知识转移实现稳健、高效的动态频谱共享
  • 批准号:
    2245918
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: CNS: Design and System Technology Co-optimization Towards Addressing the Memory Bottleneck Problem of Deep Learning Hardware
CRII:CNS:设计和系统技术协同优化解决深度学习硬件的内存瓶颈问题
  • 批准号:
    2153394
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: CNS: Towards an Efficient Serverless Mobile Edge Computing Network
CRII:CNS:迈向高效的无服务器移动边缘计算网络
  • 批准号:
    2153220
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: CNS: Towards Spectrum and Energy Efficient Large-scale IoT Communications: A Cross-layer Optimization Approach
CRII:CNS:迈向频谱和节能的大规模物联网通信:跨层优化方法
  • 批准号:
    2236449
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: CNS: Towards Robust RAN Slicing: Theories, Algorithms, and Applications
CRII:CNS:迈向稳健的 RAN 切片:理论、算法和应用
  • 批准号:
    2103405
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了