CRII: CNS: Design and System Technology Co-optimization Towards Addressing the Memory Bottleneck Problem of Deep Learning Hardware
CRII:CNS:设计和系统技术协同优化解决深度学习硬件的内存瓶颈问题
基本信息
- 批准号:2153394
- 负责人:
- 金额:$ 17.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Artificial intelligence and deep learning (AI/DL) are influencing a range of areas, including autonomous vehicles, healthcare, cybersecurity, language processing, robotics, gene editing, climate science, and numerous others. Data size is increasing significantly, yielding ever larger data sets and model sizes to achieve desired levels of AI/DL accuracy. Over the last several years, growth in AI compute capability has far exceeded growth in per-accelerator memory capacity, both on-chip and off-chip. Memory has become the key bottleneck in AI/DL hardware, demanding new approaches to resolve this bottleneck. This project includes two key thrusts: (1) Key performance parameters of on-chip and off-chip memory systems will be co-optimized with AI/DL hardware, considering interactions between the Design and Technology (DTCO), and the overall System and Technology (STCO). (2) Emerging Magnetic Random Access Memory (MRAM), chiplets, and packaging interconnect technologies will be utilized to optimally design the hardware.This project will influence novel paradigms for designing high-performance and energy-efficient AI/DL hardware, impacting the development of new AI/DL algorithms – bringing society one step closer to achieving human-level intelligence in machines. With diminishing returns from Moore’s law, STCO and DTCO have recently become emerging paradigms for tuning the technology for the best performance gains in hardware. The outcomes of this work will be instrumental in enriching scientific knowledge in this field and influence future researchers working on other emerging technical domains. Aligned with the goal of establishing United States’ leadership in the AI/DL domain, the efforts of this project are dedicated to achieving excellence in education, workforce development, and outreach through graduate and undergraduate research, mentoring underrepresented and minority students, and promoting AI hardware education at the K-12 level.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是根据2021年《美国救援计划法》(公法117-2)的全部或部分资助的。人工智能和深度学习(AI/DL)正在影响一系列领域,包括自动驾驶汽车,医疗保健,网络安全,语言处理,机器人,机器人技术,基因编辑,气候科学,气候科学以及许多其他领域。数据大小正在显着增加,产生较大的数据集和模型尺寸,以达到所需的AI/DL准确性水平。在过去的几年中,AI计算能力的增长远远超过了芯片和外片的每个加速器记忆能力的增长。内存已成为AI/DL硬件中的关键瓶颈,要求采用新的方法来解决这种瓶颈。该项目包括两个关键推力:(1)考虑到设计与技术(DTCO)之间的交互以及整体系统和技术(STCO),考虑到片上和芯片内存储系统的关键性能参数将与AI/DL硬件进行优化。 (2) Emerging Magnetic Random Access Memory (MRAM), chiplets, and packaging interconnect technologies will be utilized to optimally design the hardware.This project will influence novel paradigms for designing high-performance and energy-efficient AI/DL hardware, impacting the development of new AI/DL algorithms – bringing society one step closer to achieving human-level Intelligence in machines.随着Moore定律的回报率降低,STCO和DTCO最近已成为新兴的范式,以调整技术以获得硬件的最佳性能增长。这项工作的结果将有助于丰富该领域的科学知识,并影响从事其他新兴技术领域的未来研究人员。符合目标在AI/DL领域建立美国领导的目标,该项目的努力致力于通过研究生和本科研究来实现卓越的教育,劳动力发展和宣传卓越,精神上缺乏代表性的学生和少数派学生,并通过K-12级的Internifection Insport Internifection Internition Internifection Internife Internifection nsf decrient of Derem nsf的宣布,以表现出nsf的宣布。优点和更广泛的影响审查标准。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
System and Design Technology Co-optimization of Chiplet-based AI Accelerator with Machine Learning
基于Chiplet的AI加速器与机器学习的系统和设计技术协同优化
- DOI:10.1145/3583781.3590233
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Mishty, Kaniz;Sadi, Mehdi
- 通讯作者:Sadi, Mehdi
Designing Efficient and High-Performance AI Accelerators With Customized STT-MRAM
- DOI:10.1109/tvlsi.2021.3105958
- 发表时间:2021-10-01
- 期刊:
- 影响因子:2.8
- 作者:Mishty, Kaniz;Sadi, Mehdi
- 通讯作者:Sadi, Mehdi
Analogy-Guided Evolutionary Pretraining of Binary Word Embeddings
类比引导的二进制词嵌入进化预训练
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:R. Alexander Knipper, Md. Mahadi
- 通讯作者:R. Alexander Knipper, Md. Mahadi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mehdi Sadi其他文献
Soft-HaT
软帽
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Md. Mahbub Alam;Adib Nahiyan;Mehdi Sadi;Domenic Forte;M. Tehranipoor - 通讯作者:
M. Tehranipoor
True Random Number Generation using Latency Variations of Commercial MRAM Chips
使用商用 MRAM 芯片的延迟变化生成真正的随机数
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
F. Ferdaus;B. M. S. B. Talukder;Mehdi Sadi;Md. Tauhidur Rahman - 通讯作者:
Md. Tauhidur Rahman
Test and Yield Loss Reduction of AI and Deep Learning Accelerators
人工智能和深度学习加速器的测试和良率损失降低
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:2.9
- 作者:
Mehdi Sadi;Ujjwal Guin - 通讯作者:
Ujjwal Guin
A robust digital sensor IP and sensor insertion flow for in-situ path timing slack monitoring in SoCs
强大的数字传感器 IP 和传感器插入流程,用于 SoC 中的原位路径时序裕度监控
- DOI:
10.1109/vts.2015.7116292 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Mehdi Sadi;L. Winemberg;M. Tehranipoor - 通讯作者:
M. Tehranipoor
An efficient all-digital IR-Drop Alarmer for DVFS-based SoC
适用于基于 DVFS 的 SoC 的高效全数字 IR-Drop 警报器
- DOI:
10.1109/iscas.2016.7527210 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Liting Yu;Xiaoxiao Wang;Yuanqing Cheng;Xiaoying Zhao;Pengyuan Jiao;Aixin Chen;D. Su;L. Winemberg;Mehdi Sadi;M. Tehranipoor - 通讯作者:
M. Tehranipoor
Mehdi Sadi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
IL-17A通过STAT5影响CNS2区域甲基化抑制调节性T细胞功能在银屑病发病中的作用和机制研究
- 批准号:82304006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miR-20a通过调控CD4+T细胞焦亡促进CNS炎性脱髓鞘疾病的发生及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miR-20a通过调控CD4+T细胞焦亡促进CNS炎性脱髓鞘疾病的发生及机制研究
- 批准号:82201491
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
血浆CNS来源外泌体中寡聚磷酸化α-synuclein对PD病程的提示研究
- 批准号:82101506
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于脑微血管内皮细胞模型的毒力岛4在单增李斯特菌CNS炎症中的作用及机制研究
- 批准号:32160834
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
相似海外基金
CRII: CNS: Integrated Sensing and Communication with Optical Wireless: A Retro-reflective Link Design
CRII:CNS:光学无线集成传感和通信:回归反射链路设计
- 批准号:
2245747 - 财政年份:2023
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
2023 Inhibition in the CNS Gordon Research Conference and Gordon Research Seminar
2023年中枢神经系统戈登研究会议和戈登研究研讨会的抑制
- 批准号:
10683610 - 财政年份:2023
- 资助金额:
$ 17.49万 - 项目类别:
Development of Gamma delta CAR-T cells to target CNS HIV reservoir
开发针对 CNS HIV 储存库的 Gamma delta CAR-T 细胞
- 批准号:
10620021 - 财政年份:2023
- 资助金额:
$ 17.49万 - 项目类别:
Biomarkers for parkinsonian disorders in CNS-originating extracellular vesicles
中枢神经系统来源的细胞外囊泡中帕金森病的生物标志物
- 批准号:
10662918 - 财政年份:2023
- 资助金额:
$ 17.49万 - 项目类别:
Identifying novel regenerative treatments for CNS injury in adult mammals
确定成年哺乳动物中枢神经系统损伤的新型再生疗法
- 批准号:
10735524 - 财政年份:2023
- 资助金额:
$ 17.49万 - 项目类别: